Повышенное атмосферное давление возникает тогда когда воздух


Влияние повышенного атмосферного давления на артериальное давление человека

Резкое изменение погоды может ухудшить их самочувствие. Особенно остро реагируют на погодные колебания люди, у которых периодически наблюдается повышение показателей тонометра.

Содержание статьи

Влияние повышенного атмосферного давления на организм человека

Давление атмосферы, которое превышает показатель 760 мм рт. ст., считается повышенным. В течение всего календарного года это значение нередко увеличивается еще на 30 единиц, чем, несомненно, оказывает негативное влияние на человека, страдающего гипертонией.

Как правило, у таких пациентов возникает давящая головная боль в затылочной части, головокружение, сонливость, увеличивается чувство тревоги, страха, нередки случаи желудочного расстройства, а также скачки показателей.

Влияние повышенного атмосферного давления на организм человека чаще всего отмечается осенью, во время обострения вирусных инфекций и простудных заболеваний.

Даже здоровые люди в данный период способны ощутить легкое недомогание.

Нередко гипертоники остро реагируют не только на перепады атмосферного давления, но и на рост, либо же понижение температуры воздуха, влажности. Причинами такой чувствительности могут выступать:

  • частые простудные заболевания по причине низкого иммунитета;
  • нарушения в работе нервной системы;
  • патологии кровеносных сосудов;
  • возраст;
  • загрязненная экология;
  • малоподвижный образ жизни.

Повышенное атмосферное давление на здоровье гипертоников оказывает негативное воздействие. Как правило, в этот период нет осадков и ветра, что влечет за собой загрязнение воздуха. Метеорологи называют период повышенного атмосферного давления антициклоном. В этот промежуток времени пациенты жалуются на снижение работоспособности, слабость, пульсирующую головную боль. Атмосферное давление и гипертония могут спровоцировать и другие симптомы:

  • сердечная боль;
  • учащенный пульс и сердцебиение;
  • покраснение кожных покровов лица;
  • ухудшение зрения;
  • появление темных точек перед глазами.

Такое влияние атмосферного давления на артериальное давление чаще всего испытывают люди пожилого возраста, которые имеют хронические заболевания сердечнососудистой системы. Во время антициклона показатели у гипертоника могут достигать отметки 220/120. Подобные значения способны спровоцировать гипертонический криз, в результате которого может случиться инсульт, инфаркт миокарда или тромбоз. Также существует риск возникновения комы и даже летального исхода.

При повышении атмосферного давления, артериальное тоже увеличивается. Особенно остро это ощущается, когда антициклон сопровождается понижением температуры воздуха.

Повышенная влажность, в совокупности с сильным ветром может спровоцировать гипертермию – это состояние, при котором наступает переохлаждение организма за счет возбуждения особого отдела ЦНС. У пациентов сокращаются процессы теплоотдачи организма из-за спазмов сосудистой системы. Наряду с этим начинается термическое сопротивление организма, которое сопровождается сужением сосудов лица и конечностей.

Резкое переохлаждение организма может привести к острому сосудистому спазму и повышению давления. Его влияние отмечается на многих биологических процессах, в частности на составе крови, в котором уменьшается число защитного белка.

Планируя, к примеру, отдых в горах, следует знать, как влияет давление воздуха на высоте. Стоит отметить, что на возвышенности оно низкое. От такого атмосферного давления у людей с гипертонической болезнью могут проявиться следующие симптомы:

  • учащенный пульс и сердечные сокращения;
  • головная боль;
  • удушье;
  • кровь из носа.

Возникновение перечисленных симптомов происходит из-за недостатка кислорода, которого с поднятием на большой высоте становится очень мало. Организм, не получая его в достаточном объеме, испытывает кислородное голодание, что может привести даже к обморокам. Спускаясь под землю, или ныряя с аквалангом на большую глубину, гипертоники должны быть готовы к повышенному атмосферному давлению.

Как облегчить состояние гипертоника?

Организм человека способен приспосабливаться к любым условиям. При стабильной погоде, как правило, отмечается нормальное самочувствие. Однако при резкой смене циклона на антициклон, ситуация может кардинально поменяться. Если подобные изменения в погоде происходят слишком часто, организму требуется время для того, чтобы адаптироваться. 

Дискомфорт гипертоникам доставляет и низкое атмосферное давление, которое принято называть циклоном. В данный период можно наблюдать пасмурную погоду, сильные порывы ветра, повышенную влажность за счет выпадения осадков. Так же как и при повышенном атмосферном давлении, во время циклона у гипертоников учащается пульс и дыхание. А вот сокращение сердца, напротив, уменьшается, что приводит к одышке и быстрой утомляемости.

В период циклона наблюдается прямая зависимость артериального давления от атмосферного. По мере его снижения происходит понижение и показателей тонометра. Это приводит к тому, что у гипертоников могут проявляться такие симптомы, как:

  • головокружение;
  • снижение работоспособности;
  • головные боли.

Если на артериальное давление человека оказывает влияние погода, таким людям врачи рекомендуют не переутомляться. При высоком атмосферном давлении лучше избегать чрезмерных нагрузок. В этот период организм испытывает стресс, поэтому нуждается в полноценном отдыхе.

Так как атмосферное давление влияет на артериальное, при антициклоне, который сопровождается очень жаркой погодой, лучше не выходить на улицу, а находиться в проветриваемом помещении с кондиционером. Питание гипертоников в этот период должно быть сбалансированным, но низкокалорийным. Стоит отдавать предпочтение продуктам, богатым калием.

Снизить давление во время антициклона поможет достаточное потребление жидкости. Гипертоникам рекомендуется употреблять много чистой воды, отвары полезных лекарственных растений, не перетруждаться и больше отдыхать. Потому как атмосферное давление влияет на артериальное, с целью контроля его необходимо измерять несколько раз в день.

Чудотворное действие на человеческий организм оказывает здоровый сон, который длится не менее 8 часов. Помогает бороться с повышенным давлением и натуральный кофе.

Гипертоники могут себе позволить с утра выпить чашечку ароматного, бодрящего напитка.

Во время высокого атмосферного давления в сочетании с сильной жарой, нередко возникают такие осложнения, как кровоизлияние головного мозга и различные сердечные патологии. Высокая температура воздуха и низкая влажность способствуют уменьшению содержания кислорода в воздухе. Такие условия приводят к загустению крови и провоцируют тромбозы, инфаркты и инсульты.

Метеозависимость, несомненно, приводит к возникновению дискомфорта и ухудшению самочувствия больных, страдающих гипертонией. Их состояние здоровья в буквальном смысле некоторое время в году зависит от атмосферного давления. Таким пациентам необходимо заблаговременно просматривать прогнозы синоптиков, что позволит подготовиться к перепадам и следовать советам лечащего врача.

Повышенное атмосферное давление возникает тогда когда воздух поднимается

С атмосферным давлением каждый хорошо знаком, как минимум, благодаря урокам физики и прогнозам погоды. Однако с научной точки зрения понятие давления, а также особенности его возникновения выглядят намного сложнее. Кроме того, интерес вызывают нюансы влияния давления на человека.

Что такое атмосферное давление?

Атмосферное давление – это давление газовой оболочки нашей планеты, атмосферы, которое действует на все имеющиеся в ней предметы, а также земную поверхность. Давление соответствует силе, которая действует в атмосфере на единицу площади.

Атмосфера Земли (фото с МКС)

Если говорить более простым языком, то это сила, с которой повсюду окружающий нас воздух воздействует на поверхность земли и объекты. Отслеживая изменения атмосферного давления, можно в совокупности с другими факторами прогнозировать погодные условия.

Почему и вследствие чего создается атмосферное давление?

Специалисты, изучающие атмосферу Земли и различные метеорологические явления, тщательно следят за тем, как перемещаются воздушные массы. Это основной фактор, влияющий на климатические условия той или иной местности. Эти наблюдения дали возможность понять, почему возникает атмосферное давление.

Всему виной гравитация. Путем множества экспериментов доказано, что воздух отнюдь не невесомый. Он состоит из различных газов, которые имеют определенный вес. Таким образом, на воздух действует сила притяжения Земли, которая и способствует образованию давления.

Интересный факт: весь воздух на планете (или вся атмосфера Земли) весит 51 х 1014 тонн.

Вокруг земного шара масса воздуха неодинаковая. Соответственно колеблется и уровень атмосферного давления. На участках с большей массой воздуха наблюдается более высокое давление. Если же воздуха меньше (его также называют разреженным в таких случаях), то и давление ниже.

Движение Солнце

Почему меняется вес атмосферы? Секрет этого явления таится в нагревании воздушных масс. Дело в том, что нагревание воздуха происходит вовсе не от солнечных лучей, а за счет земной поверхности.

Вблизи нее воздух нагревается и, становясь легче, поднимается вверх. В это время охлажденные потоки тяжелеют и опускаются вниз. Этот процесс происходит беспрерывно. Каждый воздушный поток имеет свое давление, а его разность вызывает ветер.

Как влияет состав атмосферы на давление?

В состав атмосферы входит огромное количество газов. Преимущественно это азот и кислород (98%). Также имеется углекислый газ, неон, аргон и др. Атмосфера начинается с пограничного слоя толщиной 1-2 км и заканчивается экзосферой на высоте около 10 000 км, где плавно переходит в межпланетное пространство.

Состав атмосферы

Состав атмосферы влияет на давление за счет плотности. Каждый компонент имеет свою плотность. Чем больше высота, тем тоньше слой атмосферы и ниже его плотность. Соответственно снижается и давление.

Измерение атмосферного давления

В Международной системе единиц атмосферное давление измеряется в паскалях (Па). Также в России используются такие единицы, как бар, миллиметры ртутного столба и их производные. Их применение обусловлено приборами, при помощи которых измеряется давление – ртутными барометрами. 1 мм ртутного столба соответствует около 133 Па.

Барометры бывают двух типов:

  • жидкостные;
  • механические (барометр-анероид).

Жидкостные барометры заполняются ртутью. Изобретение данного прибора – это заслуга итальянского ученого Эванджелисты Торричелли. В 1644 году он проводил эксперимент с емкостью, ртутью и колбой, которая открытым отверстием опускалась в жидкость.

При изменении давления ртуть то поднималась, то опускалась в колбе. Современные ртутные барометры со шкалами считаются наиболее точными, но не очень удобными, поэтому их используют на метеорологических станциях.

Барометры

Более распространены барометры-анероиды. В конструкции такого прибора предусмотрена металлическая коробка с разреженным воздухом внутри. Когда давление понижается, коробка расширяется. При возрастающем давлении коробка сжимается и действует на прикрепленную пружину. Пружина приводит в движение стрелку, которая отображает на шкале уровень давления.

Интересный факт: существует эталон единицы давления (как и других единиц физических величин). Первичный эталон, отображающий абсолютное давление максимально точно, находится во Всероссийском НИИ метрологии имени Менделеева (Санкт-Петербург).

Норма атмосферного давления для человека

Нормальное атмосферное давление – это 760 мм ртутного столба или 101 325 Па при температуре 0℃ на уровне моря (45º широты). При этом на каждый квадратный сантиметр поверхности земли атмосфера воздействует с силой в 1,033 кг. Ртутный столб высотой 760 мм уравновешивает массу этого воздушного столба.

Показатель в 760 мм тоже был определен Торричелли в ходе эксперимента. Также он заметил, что когда колба наполняется ртутью, вверху остается пустота. Впоследствии это явление получило название «торричеллиевой пустоты». Тогда ученый еще не знал, что в ходе своего эксперимента создал вакуум – то есть пространство, свободное от каких-либо веществ.

При стандартном давлении в 760 мм ртутного столба человек ощущает себя наиболее комфортно. Если учесть предыдущие данные, то на человека воздух давит с силой около 16 тонн. Почему тогда мы не ощущаем этого давления?

Дело в том, что внутри организма тоже имеется давление. Не только люди, но и представители животного мира приспособились к атмосферному давлению. Каждый орган формировался и развивался под влиянием данной силы. Когда атмосфера воздействует на тело, эта сила распределяется равномерно по всей поверхности. Таким образом, давление уравновешивается, и мы его не чувствуем.

Карта атмосферного давления России

Норму атмосферного давления не стоит путать с климатической нормой. Каждый регион имеет свои стандарты для определенного времени года. Например, жителям Владивостока повезло, поскольку там среднегодовой показатель атмосферного давления почти равен норме – 761 мм ртутного столба.

А в населенных пунктах, расположенных в горной местности (например, в Тибете), давление гораздо ниже – 413 мм ртутного столба. Это связано с высотой около 5000 м.

Повышение и понижение давления

Когда давление превышает отметку в 760 мм. рт. ст., его называют повышенным, а когда показатель меньше нормы – пониженным.

В течение 24 часов происходит несколько перепадов атмосферного давления. Утром и вечером оно повышается, а после 12 часов дня и ночи – понижается. Это происходит в связи с тем, что меняется температура воздуха и, соответственно, его потоки перемещаются.

В зимний период над материковой частью Земли отмечается самое высокое атмосферное давление, потому что воздух имеет низкую температуру и отличается высокой плотностью. Летом наблюдается противоположная ситуация – отмечается минимальное давление.

В более глобальных масштабах уровень давления тоже зависит от температуры. Земная поверхность нагревается неодинаково: планета имеет геоидную (а не идеально круглую) форму и вращается вокруг Солнца. Одни зоны нагреваются сильнее, другие – слабее. Из-за этого и атмосферное давление распределяется по поверхности планеты зонально.

Пояса атмосферного давления

Ученые выделяют 3 пояса, где преобладает низкое давление и 4 пояса с преобладающими максимумами. Зона экватора прогревается больше всего, поэтому легкий теплый воздух поднимается вверх, а у поверхности образовывается низкое давление.

Вблизи полюсов все наоборот: холодный воздух опускается, поэтому здесь отмечается высокое давление. Если посмотреть на схему распределения давления по поверхности планеты, можно заметить, что пояса минимумов и максимумов чередуются.

Кроме того, нужно помнить и о неравномерном нагревании обоих полушарий Земли в течение года. Это приводит к определенному смещению поясов низкого и высокого давления. Летом они сдвигаются в северном направлении, а зимой – в южном.

Влияние на человека

Атмосферное давление оказывает серьезное воздействие на организм человека. Это вполне естественно, если учитывать все вышесказанное относительно силы, с которой воздух давит на наше тело и оказываемого противодействия.

Как изменения в погоде влияют на человека

Существует понятие метеорологической зависимости, подтвержденное наукой и медициной. Метеопатами считаются люди, организм которых реагирует даже на минимальные отклонения давления от нормы. К ним также относятся люди с некоторыми хроническими заболеваниями (в частности сердечнососудистой, нервной системы и др.).

В целом организм человека умеет приспосабливаться к изменению климатических условий. Например, при путешествии в страну с совершенно другими погодными условиями может потребоваться несколько дней на акклиматизацию.

Значительные отклонения от нормы будут ощутимы для абсолютно любого человека. Сюда относится как повышенное, так и пониженное давление.

В обычной жизни повышение атмосферного давления до критического уровня, при котором ухудшается самочувствие человека, не происходит (за исключением вышеупомянутых метеозависимых и хронически больных). Ощутить его эффект можно, например, при погружении на большую глубину.

Пониженное и повышенное давление

Пониженное атмосферное давление более опасно. Его воздействие можно легко ощутить на большой высоте. Существует понятие высотной болезни, при которой увеличивается количество углекислого газа. Объем кислорода при этом, наоборот, понижается, поэтому ткани организма ощущают кислородное голодание. Сосуды быстро реагируют на это, провоцируя резкое возрастание давления в организме.

Циклон

Циклон – это огромная масса воздуха, которая вращается в виде вихря вокруг вертикальной оси диаметром до нескольких тысяч километров. В центре данного вихря наблюдается пониженное давление.

Циклоны

В Северном полушарии атмосферный вихрь циклона вращается против часовой стрелки, в Южном – по часовой. Циклоны возникают регулярно, так как их образование напрямую связано с вращением Земли. Не бывает циклонов рядом с экватором.

Циклоны бывают двух типов:

  1. Тропические. Возникают в тропических широтах, отличаются относительно небольшими размерами. Однако им свойственна огромная, разрушительная сила ветра.
  2. Внетропические. Формируются в полярных и умеренных широтах. Достигают нескольких тысяч километров в диаметре.

Интересный факт: в тропических циклонах нередко наблюдается «глаз бури» – это область размером около 20 км в самом центре вихря, в которой сохраняется ясная и безветренная погода.

Главные отличительные особенности циклона – колоссальная энергия, которая проявляется в виде сильных ветров, бурь, гроз, шквалов, осадков. Мощным тропическим циклонам присваивают уникальные имена или названия, например, «Катрина» (2005), «Нина» (1975), «Дориан» (2019).

Антициклон

Антициклон – это не только противоположность циклона. Данное явление имеет другой механизм возникновения. Ветер в обоих полушариях Земли движется в обратном направлении по сравнению с циклоном.

Антициклон

Антициклон представляет собой область высокого давления. Ей свойственны замкнутые изобары – это линии, которыми отмечаются места с одинаковым атмосферным давлением.

Антициклон приносит стабильные погодные условия, соответствующие времени года. Летом это безветренная жаркая погода, зимой – морозная. Характеризуется малым количеством облаков или полным их отсутствием.

Формируются антициклоны на определенных участках. Например, чаще всего они возникают над большими массивами льда: в Антарктиде, Гренландии, Арктике. Также встречаются в тропиках.

Антициклоны тоже несут в себе опасность и неприятные последствия. Они могут способствовать возникновению пожаров, продолжительных засух. При долгом отсутствии ветра в крупных городах накапливаются вредные вещества, газы, что особенно остро ощущают люди с заболеваниями дыхательных путей.

Разница между циклоном и антициклоном

Интересный факт: существуют блокирующие циклоны, которые формируются над определенной зоной и никуда не движутся. При этом они не пропускают прочие воздушные массы. Обычно они длятся не дольше 5 суток, но регулярно в Европейской части России антициклоны держатся около месяца. Последний раз это было в 2015 году. Результат – жара, засуха, лесные пожары.

Как с высотой изменяется атмосферное давление? Формула, график

Атмосферное давление напрямую зависит от высоты. Чем выше, тем давление ниже и наоборот. Если подняться на 12 м выше уровня моря, столбик ртути в барометре снизится на 1 мм.

Давление чаще отображают в гектопаскалях вместо мм рт. ст.: 1 мм = 133,3 Па = 1, 333 гПа. Показать взаимоотношение высоты и давления можно при помощи несложной формулы:

∆h/∆P=12 м/мм рт. ст или ∆h/∆P=9 м/гПа,

где ∆h — изменение высоты,
∆P — изменение давления.

Таким образом, при подъеме на 9 метров, уровень давления снижается на 1 гПа. Этот показатель называется барической ступенью. Норма атмосферного давления – 1013 гПа (можно округлить до 1000).

Как с помощью этих данных рассчитать изменение давление на другой высоте? К примеру, при подъеме на 90 м давление снизится на 10 гПа. В таком случае выходит, что при подъеме на 900 м давление упадет до 0.

Но с высотой меняется и плотность воздуха, поэтому, когда речь идет о большей дистанции (начиная с 1,5-2 км), все расчеты надо проводить с учетом данного показателя.

График соотношения высоты и давления

График изменения атмосферного давления с высотой наглядно отображает все вышесказанное. Он приобретает вид кривой линии, а не прямой. Из-за того, что плотность атмосферы неодинаковая, с увеличением высоты давление начинает снижаться все медленнее. Однако оно никогда не достигнет нуля, поскольку повсюду есть какое-то вещество – во Вселенной нет вакуума.

Атмосферное давление в горах

В горах давление будет в любом случае ниже. Как себя при этом чувствует человек, зависит от высоты, а также дополнительных условий. Например, при нормальной влажности подъем на 3000 м может вызвать слабость, снижение работоспособности. Это объясняется недостатком кислорода.

Во влажном климате аналогичные ощущения возникают уже на высоте 1000 м. Дело в том, что молекулы воды вытесняют молекулы кислорода – во влажном воздухе его меньше. А в сухом климате можно практически без проблем подняться на 5000 м.

Снижение давления с высотой

Разная высота и ее влияние:

  1. 5 км – ощущение недостатка кислорода.
  2. 6 км – максимальная высота, на которой располагаются постоянные поселения.
  3. 8,9 км – высота Эвереста. Вода закипает при температуре +68℃. Недолго находиться на таком уровне могут подготовленные люди.
  4. 13,5 км – безопасно находиться можно лишь при наличии чистого кислорода. Максимально допустимая высота, на которой можно пребывать без специальной защиты.
  5. 20 км – высота, недопустимая для человека. Только при условии нахождения в герметичной кабине.

Интересное видео про атмосферное давление

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Эксперт и постоянный автор научно-популярного журнала: «Как и Почему». Свидетельство о регистрации средства массовой информации ЭЛ № ФС 77 – 76533. Издание «Как и почему» kipmu.ru входит в список социально значимых ресурсов РФ.

Повышенное атмосферное давление возникает когда воздух

С атмосферным давлением каждый хорошо знаком, как минимум, благодаря урокам физики и прогнозам погоды. Однако с научной точки зрения понятие давления, а также особенности его возникновения выглядят намного сложнее. Кроме того, интерес вызывают нюансы влияния давления на человека.

Что такое атмосферное давление?

Атмосферное давление – это давление газовой оболочки нашей планеты, атмосферы, которое действует на все имеющиеся в ней предметы, а также земную поверхность. Давление соответствует силе, которая действует в атмосфере на единицу площади.

Атмосфера Земли (фото с МКС)

Если говорить более простым языком, то это сила, с которой повсюду окружающий нас воздух воздействует на поверхность земли и объекты. Отслеживая изменения атмосферного давления, можно в совокупности с другими факторами прогнозировать погодные условия.

Почему и вследствие чего создается атмосферное давление?

Специалисты, изучающие атмосферу Земли и различные метеорологические явления, тщательно следят за тем, как перемещаются воздушные массы. Это основной фактор, влияющий на климатические условия той или иной местности. Эти наблюдения дали возможность понять, почему возникает атмосферное давление.

Всему виной гравитация. Путем множества экспериментов доказано, что воздух отнюдь не невесомый. Он состоит из различных газов, которые имеют определенный вес. Таким образом, на воздух действует сила притяжения Земли, которая и способствует образованию давления.

Интересный факт: весь воздух на планете (или вся атмосфера Земли) весит 51 х 1014 тонн.

Вокруг земного шара масса воздуха неодинаковая. Соответственно колеблется и уровень атмосферного давления. На участках с большей массой воздуха наблюдается более высокое давление. Если же воздуха меньше (его также называют разреженным в таких случаях), то и давление ниже.

Движение Солнце

Почему меняется вес атмосферы? Секрет этого явления таится в нагревании воздушных масс. Дело в том, что нагревание воздуха происходит вовсе не от солнечных лучей, а за счет земной поверхности.

Вблизи нее воздух нагревается и, становясь легче, поднимается вверх. В это время охлажденные потоки тяжелеют и опускаются вниз. Этот процесс происходит беспрерывно. Каждый воздушный поток имеет свое давление, а его разность вызывает ветер.

Как влияет состав атмосферы на давление?

В состав атмосферы входит огромное количество газов. Преимущественно это азот и кислород (98%). Также имеется углекислый газ, неон, аргон и др. Атмосфера начинается с пограничного слоя толщиной 1-2 км и заканчивается экзосферой на высоте около 10 000 км, где плавно переходит в межпланетное пространство.

Состав атмосферы

Состав атмосферы влияет на давление за счет плотности. Каждый компонент имеет свою плотность. Чем больше высота, тем тоньше слой атмосферы и ниже его плотность. Соответственно снижается и давление.

Измерение атмосферного давления

В Международной системе единиц атмосферное давление измеряется в паскалях (Па). Также в России используются такие единицы, как бар, миллиметры ртутного столба и их производные. Их применение обусловлено приборами, при помощи которых измеряется давление – ртутными барометрами. 1 мм ртутного столба соответствует около 133 Па.

Барометры бывают двух типов:

  • жидкостные;
  • механические (барометр-анероид).

Жидкостные барометры заполняются ртутью. Изобретение данного прибора – это заслуга итальянского ученого Эванджелисты Торричелли. В 1644 году он проводил эксперимент с емкостью, ртутью и колбой, которая открытым отверстием опускалась в жидкость.

При изменении давления ртуть то поднималась, то опускалась в колбе. Современные ртутные барометры со шкалами считаются наиболее точными, но не очень удобными, поэтому их используют на метеорологических станциях.

Барометры

Более распространены барометры-анероиды. В конструкции такого прибора предусмотрена металлическая коробка с разреженным воздухом внутри. Когда давление понижается, коробка расширяется. При возрастающем давлении коробка сжимается и действует на прикрепленную пружину. Пружина приводит в движение стрелку, которая отображает на шкале уровень давления.

Интересный факт: существует эталон единицы давления (как и других единиц физических величин). Первичный эталон, отображающий абсолютное давление максимально точно, находится во Всероссийском НИИ метрологии имени Менделеева (Санкт-Петербург).

Норма атмосферного давления для человека

Нормальное атмосферное давление – это 760 мм ртутного столба или 101 325 Па при температуре 0℃ на уровне моря (45º широты). При этом на каждый квадратный сантиметр поверхности земли атмосфера воздействует с силой в 1,033 кг. Ртутный столб высотой 760 мм уравновешивает массу этого воздушного столба.

Показатель в 760 мм тоже был определен Торричелли в ходе эксперимента. Также он заметил, что когда колба наполняется ртутью, вверху остается пустота. Впоследствии это явление получило название «торричеллиевой пустоты». Тогда ученый еще не знал, что в ходе своего эксперимента создал вакуум – то есть пространство, свободное от каких-либо веществ.

При стандартном давлении в 760 мм ртутного столба человек ощущает себя наиболее комфортно. Если учесть предыдущие данные, то на человека воздух давит с силой около 16 тонн. Почему тогда мы не ощущаем этого давления?

Дело в том, что внутри организма тоже имеется давление. Не только люди, но и представители животного мира приспособились к атмосферному давлению. Каждый орган формировался и развивался под влиянием данной силы. Когда атмосфера воздействует на тело, эта сила распределяется равномерно по всей поверхности. Таким образом, давление уравновешивается, и мы его не чувствуем.

Карта атмосферного давления России

Норму атмосферного давления не стоит путать с климатической нормой. Каждый регион имеет свои стандарты для определенного времени года. Например, жителям Владивостока повезло, поскольку там среднегодовой показатель атмосферного давления почти равен норме – 761 мм ртутного столба.

А в населенных пунктах, расположенных в горной местности (например, в Тибете), давление гораздо ниже – 413 мм ртутного столба. Это связано с высотой около 5000 м.

Повышение и понижение давления

Когда давление превышает отметку в 760 мм. рт. ст., его называют повышенным, а когда показатель меньше нормы – пониженным.

В течение 24 часов происходит несколько перепадов атмосферного давления. Утром и вечером оно повышается, а после 12 часов дня и ночи – понижается. Это происходит в связи с тем, что меняется температура воздуха и, соответственно, его потоки перемещаются.

В зимний период над материковой частью Земли отмечается самое высокое атмосферное давление, потому что воздух имеет низкую температуру и отличается высокой плотностью. Летом наблюдается противоположная ситуация – отмечается минимальное давление.

В более глобальных масштабах уровень давления тоже зависит от температуры. Земная поверхность нагревается неодинаково: планета имеет геоидную (а не идеально круглую) форму и вращается вокруг Солнца. Одни зоны нагреваются сильнее, другие – слабее. Из-за этого и атмосферное давление распределяется по поверхности планеты зонально.

Пояса атмосферного давления

Ученые выделяют 3 пояса, где преобладает низкое давление и 4 пояса с преобладающими максимумами. Зона экватора прогревается больше всего, поэтому легкий теплый воздух поднимается вверх, а у поверхности образовывается низкое давление.

Вблизи полюсов все наоборот: холодный воздух опускается, поэтому здесь отмечается высокое давление. Если посмотреть на схему распределения давления по поверхности планеты, можно заметить, что пояса минимумов и максимумов чередуются.

Кроме того, нужно помнить и о неравномерном нагревании обоих полушарий Земли в течение года. Это приводит к определенному смещению поясов низкого и высокого давления. Летом они сдвигаются в северном направлении, а зимой – в южном.

Влияние на человека

Атмосферное давление оказывает серьезное воздействие на организм человека. Это вполне естественно, если учитывать все вышесказанное относительно силы, с которой воздух давит на наше тело и оказываемого противодействия.

Как изменения в погоде влияют на человека

Существует понятие метеорологической зависимости, подтвержденное наукой и медициной. Метеопатами считаются люди, организм которых реагирует даже на минимальные отклонения давления от нормы. К ним также относятся люди с некоторыми хроническими заболеваниями (в частности сердечнососудистой, нервной системы и др.).

В целом организм человека умеет приспосабливаться к изменению климатических условий. Например, при путешествии в страну с совершенно другими погодными условиями может потребоваться несколько дней на акклиматизацию.

Значительные отклонения от нормы будут ощутимы для абсолютно любого человека. Сюда относится как повышенное, так и пониженное давление.

В обычной жизни повышение атмосферного давления до критического уровня, при котором ухудшается самочувствие человека, не происходит (за исключением вышеупомянутых метеозависимых и хронически больных). Ощутить его эффект можно, например, при погружении на большую глубину.

Пониженное и повышенное давление

Пониженное атмосферное давление более опасно. Его воздействие можно легко ощутить на большой высоте. Существует понятие высотной болезни, при которой увеличивается количество углекислого газа. Объем кислорода при этом, наоборот, понижается, поэтому ткани организма ощущают кислородное голодание. Сосуды быстро реагируют на это, провоцируя резкое возрастание давления в организме.

Циклон

Циклон – это огромная масса воздуха, которая вращается в виде вихря вокруг вертикальной оси диаметром до нескольких тысяч километров. В центре данного вихря наблюдается пониженное давление.

Циклоны

В Северном полушарии атмосферный вихрь циклона вращается против часовой стрелки, в Южном – по часовой. Циклоны возникают регулярно, так как их образование напрямую связано с вращением Земли. Не бывает циклонов рядом с экватором.

Циклоны бывают двух типов:

  1. Тропические. Возникают в тропических широтах, отличаются относительно небольшими размерами. Однако им свойственна огромная, разрушительная сила ветра.
  2. Внетропические. Формируются в полярных и умеренных широтах. Достигают нескольких тысяч километров в диаметре.

Интересный факт: в тропических циклонах нередко наблюдается «глаз бури» – это область размером около 20 км в самом центре вихря, в которой сохраняется ясная и безветренная погода.

Главные отличительные особенности циклона – колоссальная энергия, которая проявляется в виде сильных ветров, бурь, гроз, шквалов, осадков. Мощным тропическим циклонам присваивают уникальные имена или названия, например, «Катрина» (2005), «Нина» (1975), «Дориан» (2019).

Антициклон

Антициклон – это не только противоположность циклона. Данное явление имеет другой механизм возникновения. Ветер в обоих полушариях Земли движется в обратном направлении по сравнению с циклоном.

Антициклон

Антициклон представляет собой область высокого давления. Ей свойственны замкнутые изобары – это линии, которыми отмечаются места с одинаковым атмосферным давлением.

Антициклон приносит стабильные погодные условия, соответствующие времени года. Летом это безветренная жаркая погода, зимой – морозная. Характеризуется малым количеством облаков или полным их отсутствием.

Формируются антициклоны на определенных участках. Например, чаще всего они возникают над большими массивами льда: в Антарктиде, Гренландии, Арктике. Также встречаются в тропиках.

Антициклоны тоже несут в себе опасность и неприятные последствия. Они могут способствовать возникновению пожаров, продолжительных засух. При долгом отсутствии ветра в крупных городах накапливаются вредные вещества, газы, что особенно остро ощущают люди с заболеваниями дыхательных путей.

Разница между циклоном и антициклоном

Интересный факт: существуют блокирующие циклоны, которые формируются над определенной зоной и никуда не движутся. При этом они не пропускают прочие воздушные массы. Обычно они длятся не дольше 5 суток, но регулярно в Европейской части России антициклоны держатся около месяца. Последний раз это было в 2015 году. Результат – жара, засуха, лесные пожары.

Как с высотой изменяется атмосферное давление? Формула, график

Атмосферное давление напрямую зависит от высоты. Чем выше, тем давление ниже и наоборот. Если подняться на 12 м выше уровня моря, столбик ртути в барометре снизится на 1 мм.

Давление чаще отображают в гектопаскалях вместо мм рт. ст.: 1 мм = 133,3 Па = 1, 333 гПа. Показать взаимоотношение высоты и давления можно при помощи несложной формулы:

∆h/∆P=12 м/мм рт. ст или ∆h/∆P=9 м/гПа,

где ∆h — изменение высоты,
∆P — изменение давления.

Таким образом, при подъеме на 9 метров, уровень давления снижается на 1 гПа. Этот показатель называется барической ступенью. Норма атмосферного давления – 1013 гПа (можно округлить до 1000).

Как с помощью этих данных рассчитать изменение давление на другой высоте? К примеру, при подъеме на 90 м давление снизится на 10 гПа. В таком случае выходит, что при подъеме на 900 м давление упадет до 0.

Но с высотой меняется и плотность воздуха, поэтому, когда речь идет о большей дистанции (начиная с 1,5-2 км), все расчеты надо проводить с учетом данного показателя.

График соотношения высоты и давления

График изменения атмосферного давления с высотой наглядно отображает все вышесказанное. Он приобретает вид кривой линии, а не прямой. Из-за того, что плотность атмосферы неодинаковая, с увеличением высоты давление начинает снижаться все медленнее. Однако оно никогда не достигнет нуля, поскольку повсюду есть какое-то вещество – во Вселенной нет вакуума.

Атмосферное давление в горах

В горах давление будет в любом случае ниже. Как себя при этом чувствует человек, зависит от высоты, а также дополнительных условий. Например, при нормальной влажности подъем на 3000 м может вызвать слабость, снижение работоспособности. Это объясняется недостатком кислорода.

Во влажном климате аналогичные ощущения возникают уже на высоте 1000 м. Дело в том, что молекулы воды вытесняют молекулы кислорода – во влажном воздухе его меньше. А в сухом климате можно практически без проблем подняться на 5000 м.

Снижение давления с высотой

Разная высота и ее влияние:

  1. 5 км – ощущение недостатка кислорода.
  2. 6 км – максимальная высота, на которой располагаются постоянные поселения.
  3. 8,9 км – высота Эвереста. Вода закипает при температуре +68℃. Недолго находиться на таком уровне могут подготовленные люди.
  4. 13,5 км – безопасно находиться можно лишь при наличии чистого кислорода. Максимально допустимая высота, на которой можно пребывать без специальной защиты.
  5. 20 км – высота, недопустимая для человека. Только при условии нахождения в герметичной кабине.

Интересное видео про атмосферное давление

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Эксперт и постоянный автор научно-популярного журнала: «Как и Почему». Свидетельство о регистрации средства массовой информации ЭЛ № ФС 77 – 76533. Издание «Как и почему» kipmu.ru входит в список социально значимых ресурсов РФ.

Повышенное атмосферное давление возникает тогда когда воздух

Неправда, что у природы нет плохой погоды. Есть, и именно петербуржцы ощущают ее на себе ежедневно, потому что живут в очень неблагоприятных климатических условиях. Однако при этом одним коренным петербуржцам довелось дожить на родине до 100 лет, а другим еще в раннем детстве советовали переехать в другой регион, чтобы не усугублять развитие хронических заболеваний.

Как сказываются метеоусловия на организме, зависит от его адаптивных способностей: кто-то на них реагирует, кто-то совсем не замечает, а есть и такие, кто по самочувствию может предсказывать погоду. Считается, что особенно явно подвержены зависимости от погодных условий люди с неуравновешенной нервной системой – меланхолики и холерики. У сангвиников и флегматиков она чаще всего проявляется либо на фоне ослабления иммунитета, либо при хроническом заболевании. Впрочем, метеочувствительность как диагноз характерна как раз для тех, кто уже страдает какой-то болезнью. Как правило, это патологии дыхательной и сердечно-сосудистой систем, заболевания нервной системы, ревматоидный артрит.

Какие погодные факторы воздействуют на наше самочувствие? Заведующий отделением неврологии 122-й клинической больницы профессор Александр Ельчанинов относит к наиболее значимым метеотропным факторам: температуру воздуха, влажность, скорость ветра и барометрическое (атмосферное) давление. На организм человека влияют и гелиофизические факторы – магнитные поля.

Температура воздуха

Она оказывает самое заметное влияние на самочувствие человека в сочетании с влажностью воздуха. Самым комфортным считается сочетание температуры 18-20С° и влажности 40-60 %. При этом колебания температуры воздуха в пределах 1-10°С считаются благоприятными, 10-15С° – неблагоприятными, а выше 15С°- весьма неблагоприятными. -, объясняет профессор Ельчанинов. – Комфортная температура для сна – от 16°С до 18°С.

От температуры воздуха напрямую зависит содержание кислорода в воздухе. При похолодании он насыщается кислородом, а при потеплении, наоборот, разрежается. Как правило, в жаркую погоду еще и снижается атмосферное давление, и в результате страдающие заболеваниями дыхательной и сердечно-сосудистой систем плохо себя чувствуют.

Если же на фоне высокого давления температура воздуха понижается и сопровождается холодными дождями, то особенно тяжело это переживают гипертоники, астматики, люди с почечнокаменной и желчнокаменной болезнями. Резкие перепады температуры (8-10 °С в сутки) опасны для аллергиков и астматиков.

Экстремальные температуры

Как утверждает директор Государственного научно-исследовательского центра профилактической медицины Сергей Бойцов, при аномальной жаре лучше всего себя чувствуют люди с нормальным механизмом терморегуляции, в котором активно участвует сердечно-сосудистая система, усиливающая циркуляцию крови непосредственно под кожей. Но если температура воздуха превышает 38 гра­дусов, она уже не спасает: внешняя температура становится выше внутрен­ней, возникает риск тромбообразовани­я на фоне централизации кровотока и сгуще­ния крови. Поэтому в жару велика опасность возникновения инсульта. Врачи советуют при аномальной жаре как можно больше на­ходиться в помещении с кондиционе­ром или хотя бы вентилятором, избегать солнца, лишних физических нагрузок. Остальные рекомендации зависят от состояния здоровья человека.

Антициклон – это повышенное атмосферное давление, которое несет с собой безветренную, ясную погоду, без резких перепадов температуры и влажности.

Циклон – это сниженное атмосферное давление, которое сопровождается облачностью, повышенной влажностью, осадками и повышением температуры воздуха.

В экстремально морозную погоду организм может переохлаждаться за счет увеличения теплоотдачи. Особенно опасно сочетание низкой температуры с высокой влажностью и высокой скоростью движения воздуха. Причем, за счет рефлекторных механизмов ощущение холода возникает не только в области его воздействия, но и в, казалось бы, далеких от нее частях тела. Так, если у вас замерзли ноги, неминуемо замерзнет и нос, ощущение холода возникнет и в горле, в результате чего развиваются ОРВИ, заболевания лор-органов. Кроме того, если вы замерзли, скажем, в ожидании общественного транспорта, задействуется другой рефлекторный механизм, при котором возникает спазм сосудов почек, возможны также расстройства кровообращения, снижение иммунитета. Как правило, экстремально низкие температуры вызывают реакции спастического типа. Справиться с ними помогают любые процедуры и действия, усиливающие кровообращение: гимнастика, горячие ванны для ног, сауна, баня, контрастный душ.

Влажность воздуха

При высокой температуре влажность воздуха (насыщение воздуха парами воды) снижается, а в дождливую погоду она может достигать 80-90 %. Во время отопительного сезона влажность воздуха в наших квартирах снижается до 15-20 % (для сравнения: в пустыне Сахара влажность – 25%). Часто именно сухость домашнего воздуха, а не повышенная влажность на улице, становится причиной склонности к простудным заболеваниям: слизистые носоглотки высушиваются, снижая ее защитные функции, что позволяет легко «приживаться» респираторным вирусам. Чтобы избежать повышенной сухости в носоглотке, аллергикам и часто болеющим лор-заболеваниями рекомендуется делать промывания раствором слабосоленой или негазированной минеральной воды.

При повышенной влажности больше других опасности заболеть подвержены страдающие болезнями дыхательных путей, суставов и почек, особенно если влажность сопровождается похолоданием.

Колебания показателей влажности от 5 до 20 % оцениваются как более или менее благоприятные для организма, а от 20 до 30 % – как неблагоприятные.

Ветер

Скорость движения воздуха – ветер воспринимается нами как комфортный или некомфортный в зависимости от влажности и температуры воздуха. Так, в зоне термического комфорта (17-27С°) при тихом и легком ветре (1-4 м/с) человек чувствует себя хорошо. Однако как только температура повышается, аналогичные ощущения он будет испытывать, если движение воздуха станет более быстрым. И наоборот, при низких температурах большая скорость ветра усиливает ощущения холода. Суточную периодику имеет как горно-долинный ветер, так и другие ветровые режимы (бриз, фен). Важное значение имеют межсуточные колебания ветрового режима: разница в скорости движения воздуха в пределах 0,7 м/с благоприятна, а 8-17 м/с – неблагоприятна.

Атмосферное давление

Метеочувствительные люди уверены, что главную роль в их реакции на погоду оказывает атмосферное давление. Это и так и не так. Потому что в основном оно воздействует на наш организм в комплексе с другими природными явлениями. Общепризнано, что метеостабильное состояние отмечается при атмосферном давлении около 1013 мбар, то есть 760 мм рт. ст., – говорит профессор Александр Ельчанинов.

Если при понижении атмосферного давления содержание кислорода в атмосфере резко снижается,  растет влажность и температура, у человека падает артериальное давление и снижается скорость кровотока, как следствие затрудняется дыхание, появляется тяжесть в голове, нарушается работа сердечно-сосудистой системы. Когда атмосферное давление падает, хуже всего себя чувствуют гипотоники, что проявляется выраженной пастозностью (отечностью) тканей, тахикардией, тахипноэ (частым дыханием), то есть симптомами, характеризующими углубление гипоксии (кислородного голодания), вызванной пониженным атмосферным давлением. У гипертоников такая погода улучшает самочувствие: снижается артериальное давление и лишь при нарастающей гипоксии появляется сонливость, утомляемость, одышка, сердечные боли ишемического характера, то есть те же симптомы, что испытывают в такую погоду гипотоники сразу. Когда при повышении атмосферного давления температура понижается, в воздухе увеличивается содержание кислорода, плохо чувствуют себя гипертоники, потому что у них растет артериальное давление и увеличивается скорость кровотока. Гипотоникам же в такую погоду живется хорошо, они чувствуют прилив сил.

Солнечная активность

Мы – дети солнца, если бы его не было, не было бы жизни. Благодаря пресловутому солнечному ветру и изменениям солнечной активности меняется магнитное поле Земли, проницаемость озонового слоя, стандарты метеорологических условий. Именно солнце влияет на цикличность работы организма человека, который работает в соответствии с временами года. В нас заложена врожденная потребность в определенном количестве солнечных лучей, солнечного света и тепла. Недаром при коротком зимнем световом дне практически все страдают гипосолярным синдромом: повышенной сонливостью, утомляемостью, депрессией, апатией, снижением работоспособности и внимания. Можно сказать, что число солнечных дней в году для организма гораздо важнее, чем изменение, скажем, атмосферного давления. Поэтому жителям приморских, например средиземноморских стран, или высокогорий, жить комфортнее, чем петербуржцам или полярникам.

Погода – в доме

Повлиять на погодные условия мы не можем. Но можем снизить риски для здоровья, связанные с влиянием внешней среды. Главное помнить – метеочувствительность не проявляется как самостоятельная проблема, она как вагон за паровозом, следует за определенным заболеванием, чаще всего хроническим. Поэтому прежде всего надо его выявить и лечить. В случае обострения болезни на фоне плохой погоды, следует принимать лекарства, выписанные врачом по основной патологии (мигрень, вегетососудистая дистония, панические атаки, неврозы и неврастении). А кроме того, в соответствии с прогнозом погоды надо выработать для себя определенные правила поведения. Например, «сердечники» остро реагируют на высокую влажность воздуха и приближение грозы, значит, надо в такие дни избегать физических нагрузок и обязательно принимать выписанные врачом лекарства.

  • Всем, у кого при изменении климатических условий меняется самочувствие, важно более бережно в такие дни относиться к своему здоровью: не переутомляться, высыпаться, избегать употребления спиртных напитков, а так же физических нагрузок. Отложите, например, ежеутреннюю пробежку, иначе, скажем, в жаркую погоду можно, убегая от инфаркта, прибежать к инсульту. Любые эмоциональные и физические нагрузки в условиях непогоды – это стресс, способный привести к сбоям вегетативной регуляции, нарушению ритма сердца, скачкам артериального давления, обострению хронических заболеваний.

  • Следите за атмосферным давлением, чтобы понимать, как контролировать артериальное. Например, при низком атмосферном гипертоникам надо сократить прием препаратов, снижающих артериальное давление, а гипотоникам – принимать адаптогены (женьшень, элеутерококк, лимонник), выпить кофе. И вообще, следует помнить, что летом в теплую и жаркую погоду происходит перераспределение крови от внутренних органов к кожным покровам, поэтому артериальное давление летом ниже, чем зимой.

  • Жители Петербурга, как и любого другого мегаполиса, большую часть жизни проводят в помещении. А чем больше времени мы «прячемся» в комфорте от внешних климатических факторов, тем больше нарушается равновесие между организмом человека и внешней средой, снижаются его адаптивные возможности. Нам следует повышать устойчивость организма к неблагоприятным изменениям погоды. Поэтому, если нет противопоказаний, тренируйте вегетативную нервную и сердечно-сосудистую системы. В этом вам помогут контрастный или холодный душ, русская баня, сауна, пешеходные прогулки, лучше перед сном.

  • Организуйте себе физические нагрузки  – при них повышается артериальное давление, снижается уровень кислорода в тканях, усиливается обмен веществ, теплообразование и теплоотдача. Хорошо тренируют сердечно-сосудистую и дыхательную системы быстрая ходьба в течение 1 часа, легкий бег, плавание. Тренированные люди легко переносят изменения погоды, которые оказывают аналогичное воздействие на организм.

  • Спать рекомендуется с открытой форточкой. Причем сон должен быть достаточным – проснувшись,  вы должны чувствовать, что выспались.

  • Следите за уровнем влажности и искусственной освещенности в квартире.

  • Одевайтесь «по погоде», чтобы телу было комфортно при любых погодных условиях.

  • Если вы заметили, что чувствуете зависимость от погоды, забудьте о поездках в дальние страны «из зимы в лето» или «из лета в зиму». Срыв сезонной адаптации опасен даже для практически здоровых.

Ирина Донцова

© Доктор Питер

Повышенное атмосферное давление возникает тогда когда воздух опускается

С атмосферным давлением каждый хорошо знаком, как минимум, благодаря урокам физики и прогнозам погоды. Однако с научной точки зрения понятие давления, а также особенности его возникновения выглядят намного сложнее. Кроме того, интерес вызывают нюансы влияния давления на человека.

Что такое атмосферное давление?

Атмосферное давление – это давление газовой оболочки нашей планеты, атмосферы, которое действует на все имеющиеся в ней предметы, а также земную поверхность. Давление соответствует силе, которая действует в атмосфере на единицу площади.

Атмосфера Земли (фото с МКС)

Если говорить более простым языком, то это сила, с которой повсюду окружающий нас воздух воздействует на поверхность земли и объекты. Отслеживая изменения атмосферного давления, можно в совокупности с другими факторами прогнозировать погодные условия.

Почему и вследствие чего создается атмосферное давление?

Специалисты, изучающие атмосферу Земли и различные метеорологические явления, тщательно следят за тем, как перемещаются воздушные массы. Это основной фактор, влияющий на климатические условия той или иной местности. Эти наблюдения дали возможность понять, почему возникает атмосферное давление.

Всему виной гравитация. Путем множества экспериментов доказано, что воздух отнюдь не невесомый. Он состоит из различных газов, которые имеют определенный вес. Таким образом, на воздух действует сила притяжения Земли, которая и способствует образованию давления.

Интересный факт: весь воздух на планете (или вся атмосфера Земли) весит 51 х 1014 тонн.

Вокруг земного шара масса воздуха неодинаковая. Соответственно колеблется и уровень атмосферного давления. На участках с большей массой воздуха наблюдается более высокое давление. Если же воздуха меньше (его также называют разреженным в таких случаях), то и давление ниже.

Движение Солнце

Почему меняется вес атмосферы? Секрет этого явления таится в нагревании воздушных масс. Дело в том, что нагревание воздуха происходит вовсе не от солнечных лучей, а за счет земной поверхности.

Вблизи нее воздух нагревается и, становясь легче, поднимается вверх. В это время охлажденные потоки тяжелеют и опускаются вниз. Этот процесс происходит беспрерывно. Каждый воздушный поток имеет свое давление, а его разность вызывает ветер.

Как влияет состав атмосферы на давление?

В состав атмосферы входит огромное количество газов. Преимущественно это азот и кислород (98%). Также имеется углекислый газ, неон, аргон и др. Атмосфера начинается с пограничного слоя толщиной 1-2 км и заканчивается экзосферой на высоте около 10 000 км, где плавно переходит в межпланетное пространство.

Состав атмосферы

Состав атмосферы влияет на давление за счет плотности. Каждый компонент имеет свою плотность. Чем больше высота, тем тоньше слой атмосферы и ниже его плотность. Соответственно снижается и давление.

Измерение атмосферного давления

В Международной системе единиц атмосферное давление измеряется в паскалях (Па). Также в России используются такие единицы, как бар, миллиметры ртутного столба и их производные. Их применение обусловлено приборами, при помощи которых измеряется давление – ртутными барометрами. 1 мм ртутного столба соответствует около 133 Па.

Барометры бывают двух типов:

  • жидкостные;
  • механические (барометр-анероид).

Жидкостные барометры заполняются ртутью. Изобретение данного прибора – это заслуга итальянского ученого Эванджелисты Торричелли. В 1644 году он проводил эксперимент с емкостью, ртутью и колбой, которая открытым отверстием опускалась в жидкость.

При изменении давления ртуть то поднималась, то опускалась в колбе. Современные ртутные барометры со шкалами считаются наиболее точными, но не очень удобными, поэтому их используют на метеорологических станциях.

Барометры

Более распространены барометры-анероиды. В конструкции такого прибора предусмотрена металлическая коробка с разреженным воздухом внутри. Когда давление понижается, коробка расширяется. При возрастающем давлении коробка сжимается и действует на прикрепленную пружину. Пружина приводит в движение стрелку, которая отображает на шкале уровень давления.

Интересный факт: существует эталон единицы давления (как и других единиц физических величин). Первичный эталон, отображающий абсолютное давление максимально точно, находится во Всероссийском НИИ метрологии имени Менделеева (Санкт-Петербург).

Норма атмосферного давления для человека

Нормальное атмосферное давление – это 760 мм ртутного столба или 101 325 Па при температуре 0℃ на уровне моря (45º широты). При этом на каждый квадратный сантиметр поверхности земли атмосфера воздействует с силой в 1,033 кг. Ртутный столб высотой 760 мм уравновешивает массу этого воздушного столба.

Показатель в 760 мм тоже был определен Торричелли в ходе эксперимента. Также он заметил, что когда колба наполняется ртутью, вверху остается пустота. Впоследствии это явление получило название «торричеллиевой пустоты». Тогда ученый еще не знал, что в ходе своего эксперимента создал вакуум – то есть пространство, свободное от каких-либо веществ.

При стандартном давлении в 760 мм ртутного столба человек ощущает себя наиболее комфортно. Если учесть предыдущие данные, то на человека воздух давит с силой около 16 тонн. Почему тогда мы не ощущаем этого давления?

Дело в том, что внутри организма тоже имеется давление. Не только люди, но и представители животного мира приспособились к атмосферному давлению. Каждый орган формировался и развивался под влиянием данной силы. Когда атмосфера воздействует на тело, эта сила распределяется равномерно по всей поверхности. Таким образом, давление уравновешивается, и мы его не чувствуем.

Карта атмосферного давления России

Норму атмосферного давления не стоит путать с климатической нормой. Каждый регион имеет свои стандарты для определенного времени года. Например, жителям Владивостока повезло, поскольку там среднегодовой показатель атмосферного давления почти равен норме – 761 мм ртутного столба.

А в населенных пунктах, расположенных в горной местности (например, в Тибете), давление гораздо ниже – 413 мм ртутного столба. Это связано с высотой около 5000 м.

Повышение и понижение давления

Когда давление превышает отметку в 760 мм. рт. ст., его называют повышенным, а когда показатель меньше нормы – пониженным.

В течение 24 часов происходит несколько перепадов атмосферного давления. Утром и вечером оно повышается, а после 12 часов дня и ночи – понижается. Это происходит в связи с тем, что меняется температура воздуха и, соответственно, его потоки перемещаются.

В зимний период над материковой частью Земли отмечается самое высокое атмосферное давление, потому что воздух имеет низкую температуру и отличается высокой плотностью. Летом наблюдается противоположная ситуация – отмечается минимальное давление.

В более глобальных масштабах уровень давления тоже зависит от температуры. Земная поверхность нагревается неодинаково: планета имеет геоидную (а не идеально круглую) форму и вращается вокруг Солнца. Одни зоны нагреваются сильнее, другие – слабее. Из-за этого и атмосферное давление распределяется по поверхности планеты зонально.

Пояса атмосферного давления

Ученые выделяют 3 пояса, где преобладает низкое давление и 4 пояса с преобладающими максимумами. Зона экватора прогревается больше всего, поэтому легкий теплый воздух поднимается вверх, а у поверхности образовывается низкое давление.

Вблизи полюсов все наоборот: холодный воздух опускается, поэтому здесь отмечается высокое давление. Если посмотреть на схему распределения давления по поверхности планеты, можно заметить, что пояса минимумов и максимумов чередуются.

Кроме того, нужно помнить и о неравномерном нагревании обоих полушарий Земли в течение года. Это приводит к определенному смещению поясов низкого и высокого давления. Летом они сдвигаются в северном направлении, а зимой – в южном.

Влияние на человека

Атмосферное давление оказывает серьезное воздействие на организм человека. Это вполне естественно, если учитывать все вышесказанное относительно силы, с которой воздух давит на наше тело и оказываемого противодействия.

Как изменения в погоде влияют на человека

Существует понятие метеорологической зависимости, подтвержденное наукой и медициной. Метеопатами считаются люди, организм которых реагирует даже на минимальные отклонения давления от нормы. К ним также относятся люди с некоторыми хроническими заболеваниями (в частности сердечнососудистой, нервной системы и др.).

В целом организм человека умеет приспосабливаться к изменению климатических условий. Например, при путешествии в страну с совершенно другими погодными условиями может потребоваться несколько дней на акклиматизацию.

Значительные отклонения от нормы будут ощутимы для абсолютно любого человека. Сюда относится как повышенное, так и пониженное давление.

В обычной жизни повышение атмосферного давления до критического уровня, при котором ухудшается самочувствие человека, не происходит (за исключением вышеупомянутых метеозависимых и хронически больных). Ощутить его эффект можно, например, при погружении на большую глубину.

Пониженное и повышенное давление

Пониженное атмосферное давление более опасно. Его воздействие можно легко ощутить на большой высоте. Существует понятие высотной болезни, при которой увеличивается количество углекислого газа. Объем кислорода при этом, наоборот, понижается, поэтому ткани организма ощущают кислородное голодание. Сосуды быстро реагируют на это, провоцируя резкое возрастание давления в организме.

Циклон

Циклон – это огромная масса воздуха, которая вращается в виде вихря вокруг вертикальной оси диаметром до нескольких тысяч километров. В центре данного вихря наблюдается пониженное давление.

Циклоны

В Северном полушарии атмосферный вихрь циклона вращается против часовой стрелки, в Южном – по часовой. Циклоны возникают регулярно, так как их образование напрямую связано с вращением Земли. Не бывает циклонов рядом с экватором.

Циклоны бывают двух типов:

  1. Тропические. Возникают в тропических широтах, отличаются относительно небольшими размерами. Однако им свойственна огромная, разрушительная сила ветра.
  2. Внетропические. Формируются в полярных и умеренных широтах. Достигают нескольких тысяч километров в диаметре.

Интересный факт: в тропических циклонах нередко наблюдается «глаз бури» – это область размером около 20 км в самом центре вихря, в которой сохраняется ясная и безветренная погода.

Главные отличительные особенности циклона – колоссальная энергия, которая проявляется в виде сильных ветров, бурь, гроз, шквалов, осадков. Мощным тропическим циклонам присваивают уникальные имена или названия, например, «Катрина» (2005), «Нина» (1975), «Дориан» (2019).

Антициклон

Антициклон – это не только противоположность циклона. Данное явление имеет другой механизм возникновения. Ветер в обоих полушариях Земли движется в обратном направлении по сравнению с циклоном.

Антициклон

Антициклон представляет собой область высокого давления. Ей свойственны замкнутые изобары – это линии, которыми отмечаются места с одинаковым атмосферным давлением.

Антициклон приносит стабильные погодные условия, соответствующие времени года. Летом это безветренная жаркая погода, зимой – морозная. Характеризуется малым количеством облаков или полным их отсутствием.

Формируются антициклоны на определенных участках. Например, чаще всего они возникают над большими массивами льда: в Антарктиде, Гренландии, Арктике. Также встречаются в тропиках.

Антициклоны тоже несут в себе опасность и неприятные последствия. Они могут способствовать возникновению пожаров, продолжительных засух. При долгом отсутствии ветра в крупных городах накапливаются вредные вещества, газы, что особенно остро ощущают люди с заболеваниями дыхательных путей.

Разница между циклоном и антициклоном

Интересный факт: существуют блокирующие циклоны, которые формируются над определенной зоной и никуда не движутся. При этом они не пропускают прочие воздушные массы. Обычно они длятся не дольше 5 суток, но регулярно в Европейской части России антициклоны держатся около месяца. Последний раз это было в 2015 году. Результат – жара, засуха, лесные пожары.

Как с высотой изменяется атмосферное давление? Формула, график

Атмосферное давление напрямую зависит от высоты. Чем выше, тем давление ниже и наоборот. Если подняться на 12 м выше уровня моря, столбик ртути в барометре снизится на 1 мм.

Давление чаще отображают в гектопаскалях вместо мм рт. ст.: 1 мм = 133,3 Па = 1, 333 гПа. Показать взаимоотношение высоты и давления можно при помощи несложной формулы:

∆h/∆P=12 м/мм рт. ст или ∆h/∆P=9 м/гПа,

где ∆h — изменение высоты,
∆P — изменение давления.

Таким образом, при подъеме на 9 метров, уровень давления снижается на 1 гПа. Этот показатель называется барической ступенью. Норма атмосферного давления – 1013 гПа (можно округлить до 1000).

Как с помощью этих данных рассчитать изменение давление на другой высоте? К примеру, при подъеме на 90 м давление снизится на 10 гПа. В таком случае выходит, что при подъеме на 900 м давление упадет до 0.

Но с высотой меняется и плотность воздуха, поэтому, когда речь идет о большей дистанции (начиная с 1,5-2 км), все расчеты надо проводить с учетом данного показателя.

График соотношения высоты и давления

График изменения атмосферного давления с высотой наглядно отображает все вышесказанное. Он приобретает вид кривой линии, а не прямой. Из-за того, что плотность атмосферы неодинаковая, с увеличением высоты давление начинает снижаться все медленнее. Однако оно никогда не достигнет нуля, поскольку повсюду есть какое-то вещество – во Вселенной нет вакуума.

Атмосферное давление в горах

В горах давление будет в любом случае ниже. Как себя при этом чувствует человек, зависит от высоты, а также дополнительных условий. Например, при нормальной влажности подъем на 3000 м может вызвать слабость, снижение работоспособности. Это объясняется недостатком кислорода.

Во влажном климате аналогичные ощущения возникают уже на высоте 1000 м. Дело в том, что молекулы воды вытесняют молекулы кислорода – во влажном воздухе его меньше. А в сухом климате можно практически без проблем подняться на 5000 м.

Снижение давления с высотой

Разная высота и ее влияние:

  1. 5 км – ощущение недостатка кислорода.
  2. 6 км – максимальная высота, на которой располагаются постоянные поселения.
  3. 8,9 км – высота Эвереста. Вода закипает при температуре +68℃. Недолго находиться на таком уровне могут подготовленные люди.
  4. 13,5 км – безопасно находиться можно лишь при наличии чистого кислорода. Максимально допустимая высота, на которой можно пребывать без специальной защиты.
  5. 20 км – высота, недопустимая для человека. Только при условии нахождения в герметичной кабине.

Интересное видео про атмосферное давление

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Эксперт и постоянный автор научно-популярного журнала: «Как и Почему». Свидетельство о регистрации средства массовой информации ЭЛ № ФС 77 – 76533. Издание «Как и почему» kipmu.ru входит в список социально значимых ресурсов РФ.

Атмосферное давление

Одна из удивительных особенностей жизни на Земле заключается в том, что фактически мы находимся на дне огромного воздушного океана. Этот океан воздуха называется «атмосфера» и состоит в основном из газов без цвета и запаха. Иными словами можно сказать, что атмосфера — это газовая оболочка Земли.

Почему мы не замечаем давления воздуха?

Сила всемирного тяготения притягивает все к Земле, в том числе и атмосферу — газовую оболочку планеты. При этом верхние слои атмосферы давят на нижние. Так и возникает атмосферное давление. Трудно поверить, но на небольшой стол размером 1x1 м действует давление, равное давлению, производимому 10 автомобилями. Если это действительно так, то почему же стол не ломается от такой тяжести?

На каждый квадратный сантиметр поверхности нашего тела воздух оказывает давление, приблизительно равное тому, какое оказывает груз массой 1 кг.

Этого не происходит, так как атмосферное давление передается во всех направлениях, а не только вниз. Более того, насколько ты помнишь, согласно третьему закону Ньютона, на этот стол действует такая же сила, но только снизу. И атмосферное давление уравновешивается этой силой.

Известно, что воздух давит на каждого из нас с силой, равной давлению груза массой более 15 т! Это масса трех больших грузовиков! Почему же наши тела не разрушаются под действием атмосферного давления? Дело в том, что воздух внутри каждого нашего органа также находится под давлением. И внутреннее давление воздуха уравновешивает давление, действующее на наше тело снаружи.

Мы не можем жить без атмосферного давления!

Странно, но факт: мы действительно не можем жить без атмосферного давления! Даже сейчас, когда ты читаешь эту статью, твое тело использует атмосферное давление, чтобы перемещать воздух в легкие и из них. Это говорит о том, что благодаря атмосферному давлению мы можем дышать.

Как же мы дышим?

Диафрагма — самая важная мышца при вдохе. Она попеременно сокращается и расслабляется, при этом изменяются объем легких и внутреннее давление в них. Когда объем легких увеличивается, то давление  в них снижается, т.е. оно становится ниже атмосферного, и воздух начинает поступать в легкие. Так происходит вдох. При повышении давления в легких воздух выходит. Это выдох.

Диафрагма во время дыхания

Как измерить атмосферное давление?

В середине XVII в. выдающийся итальянский математик и физик Эванджелиста Торричелли проделал следующий опыт. Он взял стеклянную трубку длиной около 1 м, запаянную с одного конца, и заполнил ее ртутью. Затем перевернул трубку и опустил ее в чашку с ртутью. Как выяснилось, некоторое количество ртути вылилось в чашку, а высота оставшегося в трубке столба ртути составила 760 мм. При этом над поверхностью ртути в трубке образовалось безвоздушное пространство.

Торричелли объяснил это явление следующим образом. На поверхность ртути в чашке действует атмосферное давление, которое передается в трубку. В связи с тем, что ртуть находится в равновесии, атмосферное давление равно давлению, которое создается весом столба ртути в трубке.

Изменение атмосферного давления

Торричелли также обратил внимание, что уровень столба ртути не находится на одном месте, он меняется: либо повышается, либо понижается. На основании своих ежедневных наблюдений ученый сделал вывод о том, что если давление повышается, то столб ртути в трубке также повышается, и наоборот. Как правило, колебания атмосферного давления связаны с изменениями погоды. Если давление падает, то следует ожидать дождь и ветер. В случае повышения давления ожидается улучшение погоды, а зимой — еще и похолодание.

Барометр

Прибор, предназначенный для измерения атмосферного давления, называется «барометр».

Торричелли изобрел ртутный барометр, в котором в качестве измерителя атмосферного давления служит столбик ртути. Такие барометры используются до сих пор.

Однако в настоящее время чаще применяются более современные безжидкостные приборы, так называемые анероидные барометры.

Высота ртути в трубке, равная 760 мм, принята за эталон нормального атмосферного давления, которое можно измерять высотой ртутного столба (в мм). Когда говорят, что атмосферное давление равно, например, 755 мм ртутного столба (мм рт. ст.), это означает, что воздух производит такое же давление, что и столб ртути высотой 755 мм рт. ст.

Как мы реагируем на изменения атмосферного давления?

Наш организм приспособлен для проживания в условиях нормального атмосферного давления, и, к сожалению, любые изменения внешнего давления сказываются на нашем самочувствии.

Ты уже знаешь, что нормальным атмосферным давлением для человека считается давление 760 мм рт. ст. Однако такие показатели барометр фиксирует не так часто. Это связано с тем, что давление на поверхности Земли непостоянно и неравномерно. Величина атмосферного давления зависит от времени суток, поры года и различных географических условий. Как правило, суточные колебания давления — не более 4—5 мм. Такую незначительную разницу мы не замечаем и хорошо переносим.

У людей, живущих в Перуанских Андах на высоте 4500 м над уровнем моря, акклиматизация начинается с раннего детства. Даже их внутренние органы приспосабливаются к местным условиям. Так, размер грудной клетки жителя гор гораздо больше, чем человека, живущего на равнине

Давление на высоте

Ты уже знаешь, что верхние слои атмосферы оказывают давление на нижние. Это означает, что у поверхности Земли воздух максимально сжат. Однако чем выше мы поднимаемся над Землей, тем меньше становится слоев воздуха, которые сжимают нижние слои, и соответственно, уменьшается давление. Именно такие перепады давления мы сразу же ощущаем на себе.

Запомни: чем больше высота, тем меньше атмосферное давление

Почему мы это ощущаем

На земле давление воздуха в барабанной полости уха равно нормальному атмосферному давлению. А при наборе самолетом высоты давление снижается, и возникает разница давлений, т.е. наша ушная перепонка оказывается вдавленной. Именно поэтому мы и ощущаем заложенность в ухе.

Наиболее знакомый пример — «закладывание» ушей в самолете при взлете. Как облегчить это состояние? Есть варианты:

  1. Широко открыть рот.
  2. Сделать несколько глотательных движений.

Перепады давления в горах

В горах на высоте 2500—3000 м над уровнем моря атмосферное давление гораздо ниже, чем у подножия. В таких условиях из-за разницы давления внутри организма и атмосферного давления наш организм подвергается значительному стрессу. Более того, не исключено появление признаков горной болезни: могут возникнуть боль в ушах, затруднение дыхания, тошнота и слабость.

У тренированных альпинистов и людей, постоянно проживающих в горной местности, такое недомогание встречается крайне редко. Это связано с тем, что их организм уже приспособился к условиям пониженного давления.

Давление под водой и под землей

Представители некоторых профессий вынуждены работать в условиях пониженного давления воздуха. Это шахтеры, водолазы и рабочие кессонов — специальных конструкций, используемых для постройки мостов и других водных сооружений. Опускаясь в глубокую шахту, шахтеры испытывают на себе действие повышенного атмосферного давления. В очень глубоких шахтах оно может достигать около 850 мм рт. ст.

Давление под водой также намного превышает атмосферное. Так, например, при погружении на глубину около 100 м на водолаза будет действовать давление, которое больше атмосферного приблизительно в 10 раз!

Сложности работы водолаза

Погружение на глубину возможно только в специальных водолазных костюмах, причем резиновый скафандр используется для погружения не более чем на 40 м. Работать на больших глубинах можно только в жестком скафандре, который принимает на себя все давление воды

При длительном нахождении водолаза в условиях высокого давления воды часть воздуха, которым он дышит, растворяется в крови. При этом азот, содержащийся в воздухе, организмом не используется, а накапливается в крови. Во время подъема на поверхность азот выделяется в виде пузырьков, которые могут закупорить кровеносные сосуды. Для того чтобы не допустить возникновения этих проблем, водолаза поднимают очень медленно!

Если в течение часа водолаз работал на глубине 30 м, то выход на поверхность осуществляется в течение часа, а если тот же час водолаз провел на глубине 60 м, то подъем длится 6 часов!

Поделиться ссылкой

ГЛАВА 2. АТМОСФЕРНОЕ ДАВЛЕНИЕ

Ответ. Тропосфера содержит всю массу атмосферы, за исключением части P (тропопауза) / P (поверхность), которая находится выше тропопаузы. Из Рисунок 2-2 мы читаем P (тропопауза) = 100 гПа, P (поверхность) = 1000 гПа. Таким образом, доля Ftrop от общей массы атмосферы в тропосфере составляет

. Тропосфера составляет 90% общей массы атмосферы на 30 ° с.ш. (85% в мире).

Доля Fstrat от общей массы атмосферы в стратосфере выражается долей над тропопаузой, P (тропопауза) / P (поверхность), минус доля над стратопаузой, P (стратопауза) / P (поверхность).Из Рисунок 2-2 мы читаем P (стратопауза) = 0,9 гПа, так что

Таким образом, стратосфера содержит почти всю массу атмосферы над тропосферой. Мезосфера содержит лишь около 0,1% общей массы атмосферы.

2,4 БАРОМЕТРИЧЕСКИЙ ЗАКОН

Мы рассмотрим факторы, контролирующие вертикальный профиль температуры атмосферы в главах 4 и 7. Здесь мы сосредоточимся на объяснении вертикального профиля давления. Рассмотрим элементарный слой атмосферы (толщина dz, горизонтальная область A) на высоте z:

.

Рисунок 2-3 Вертикальные силы, действующие на элементарный слой атмосферы

Атмосфера оказывает восходящую силу давления P (z) A на нижнюю часть плиты и направленную вниз силу давления P (z + dz) A на верхнюю часть плиты; чистая сила, (P (z) -P (z + dz)) A, называется сила градиента давления.Поскольку P (z)> P (z + dz), сила градиента давления направлена ​​вверх. Чтобы плита находилась в равновесии, ее вес должен уравновешивать силу градиента давления:

(2.3)

Переставляем урожайность

(2,4)

Левая часть по определению равна dP / dz. Следовательно,

(2,5)

Теперь, исходя из закона идеального газа,

(2.6)

где Ma - молекулярная масса воздуха, T - температура. Подстановка (2,6) в (2,5) урожайность:

(2,7)

Теперь сделаем упрощающее предположение, что T постоянна с высотой; как показано в Рисунок 2-2 , T изменяется только на 20% ниже 80 км. Затем мы интегрируем (2,7) чтобы получить

(2,8)

что эквивалентно

(2.9)

Уравнение (2,9) называется барометрический закон. Удобно определить шкала высоты H для атмосферы:

(2.10)

приводя к компактной форме Барометрического закона:

(2.11)

Для средней температуры атмосферы T = 250 K масштаб высоты H = 7,4 км. Барометрический закон объясняет наблюдаемую экспоненциальную зависимость P от z в Рисунок 2-2 ; из уравнения (2.11) , график зависимости z от ln P дает прямую линию с наклоном -H (проверьте, что наклон в Рисунок 2-2 действительно близко к -7,4 км). Небольшие колебания наклона Рисунок 2-2 вызваны колебаниями температуры с высотой, которые мы не учли в нашем выводе.

Аналогично можно сформулировать вертикальную зависимость плотности воздуха. Из (2,6) , ra и P связаны линейно, если T предполагается постоянным, так что

(2.12)

Аналогичное уравнение применяется к плотности воздуха na. Для каждого подъема высоты H давление и плотность воздуха падают в е = 2,7 раза; таким образом, H обеспечивает удобную меру толщины атмосферы.

При расчете высоты шкалы от (2.10) мы предположили, что воздух ведет себя как однородный газ с молекулярной массой Ma = 29 г / моль. Закон Дальтона гласит, что каждый компонент воздушной смеси должен вести себя так, как если бы он был один в атмосфере.Тогда можно было бы ожидать, что разные компоненты будут иметь разные шкала высоты определяется их молекулярной массой. В частности, учитывая разницу в молекулярной массе между N2 и O2, можно было ожидать, что соотношение смешивания O2 будет уменьшаться с высотой. Тем не мение, гравитационное разделение воздушной смеси происходит за счет молекулярная диффузия, которая значительно медленнее, чем турбулентное вертикальное перемешивание воздуха на высотах ниже 100 км ( проблема 4. 9 ). Таким образом, турбулентное перемешивание поддерживает однородную нижнюю атмосферу.Только на высоте более 100 км начинает происходить значительное гравитационное разделение газов, причем более легкие газы обогащаются на больших высотах. Во время дебатов о вредном воздействии хлорфторуглеродов (ХФУ) на стратосферный озон некоторые не очень уважаемые ученые утверждали, что ХФУ не могут достичь стратосферы из-за их высокой молекулярной массы и, следовательно, малой высоты. В действительности турбулентное перемешивание воздуха гарантирует, что соотношения смешивания CFC в воздухе, поступающем в стратосферу, по существу такие же, как и в приземном воздухе.

.

атмосферное давление | Определение и вариации

Атмосферное давление , также называемое барометрическим давлением , сила на единицу площади, действующая на столб атмосферы (то есть на всю массу воздуха над указанной областью). Атмосферное давление можно измерить с помощью ртутного барометра (отсюда обычно используется синоним барометрическое давление ), который указывает высоту столбика ртути, который точно уравновешивает вес столба атмосферы над барометром.Атмосферное давление также измеряется с помощью барометра-анероида, в котором чувствительный элемент представляет собой один или несколько полых, частично вакуумированных, гофрированных металлических дисков, поддерживаемых от сжатия внутренней или внешней пружиной; изменение формы диска при изменении давления может быть записано с помощью ручки пера и вращающегося барабана с часовым приводом.

изменения атмосферного давления с высотой

У поверхности Земли атмосферное давление уменьшается почти линейно с увеличением высоты.Однако изучение данных на больших высотах показывает, что зависимость экспоненциальная.

Encyclopædia Britannica, Inc.

Подробнее по этой теме

климат: атмосферное давление и ветер

Атмосферное давление и ветер являются важными факторами, влияющими на погоду и климат Земли. Хотя эти двое ...

Узнайте об атмосферном давлении, его единицах и методах измерения

Описание давления и его измерения.

© Josef Martha—sciencemanconsulting.com Посмотреть все видеоролики к этой статье

Атмосферное давление выражается в нескольких различных системах единиц: миллиметры (или дюймы) ртутного столба, фунты на квадратный дюйм (psi), дин на квадратный сантиметр, миллибар (мб), стандартные атмосферы или килопаскали. Стандартное давление на уровне моря, по определению, равно 760 мм (29,92 дюйма) ртутного столба, 14,70 фунта на квадратный дюйм, 1013,25 × 10 3 дин на квадратный сантиметр, 1013,25 миллибара, одной стандартной атмосфере или 101.325 килопаскалей. Вариации этих значений довольно малы; например, самые высокие и самые низкие когда-либо зарегистрированные давления на уровне моря составляют 32,01 дюйма (в центре Сибири) и 25,90 дюйма (во время тайфуна в южной части Тихого океана). Существующие небольшие колебания давления в значительной степени определяют характер ветра и шторма на Земле.

Узнайте, почему присоскам требуется внешнее атмосферное давление для давления на внутреннюю часть низкого давления.

Узнайте, почему отсутствие атмосферного давления в космическом вакууме делает присоски непригодными для использования.

Encyclopædia Britannica, Inc. Посмотреть все видео к этой статье

У поверхности Земли давление уменьшается с высотой со скоростью примерно 3,5 миллибара на каждые 30 метров (100 футов). Однако над холодным воздухом падение давления может быть намного сильнее, потому что его плотность больше, чем у более теплого воздуха. Давление на высоте 270 000 метров (10 −6 мбар) сравнимо с давлением в самом лучшем из когда-либо созданных человеком вакууме. На высотах от 1500 до 3000 метров (от 5000 до 10000 футов) давление достаточно низкое, чтобы вызвать горную болезнь и серьезные физиологические проблемы, если не будет проведена тщательная акклиматизация.

.

Атмосферное давление: определение и факты

Книги по метеорологии часто описывают атмосферу Земли как огромный океан воздуха, в котором мы все живем. На диаграммах наша родная планета изображена как окруженная огромным атмосферным морем высотой в несколько сотен миль, разделенным на несколько различных слоев. И все же та часть нашей атмосферы, которая поддерживает всю жизнь, о которой мы знаем, в действительности чрезвычайно тонкая и простирается вверх только до 18 000 футов - чуть более 3 миль. И та часть нашей атмосферы, которую можно измерить с некоторой степенью точности, достигает примерно 25 миль (40 километров).Кроме того, дать точный ответ относительно того, где в конечном итоге заканчивается атмосфера, практически невозможно; где-то между 200 и 300 милями появляется неопределенная область, где воздух постепенно разжижается и в конечном итоге растворяется в космическом вакууме.

Так что слой воздуха, окружающий нашу атмосферу, в конце концов не такой уж и большой. Как красноречиво выразился покойный Эрик Слоан, популярный специалист в области погоды: «Земля не висит в воздушном море - она ​​висит в космическом море, и на ее поверхности есть чрезвычайно тонкий слой газа.

И этот газ - наша атмосфера.

Воздух имеет вес

Если человек поднимется на высокую гору, например Мауна-Кеа на Большом острове Гавайи, где вершина достигает 13 796 футов (4206 метров), высока вероятность заражения высотной болезнью (гипоксией). Перед восхождением на вершину посетители должны остановиться в Информационном центре, расположенном на высоте 9 200 футов (2 804 м), где им говорят акклиматизироваться к высоте, прежде чем идти дальше на гору.«Ну, конечно, - скажете вы, - в конце концов, количество доступного кислорода на такой большой высоте значительно меньше, чем на уровне моря».

Но, делая такое заявление, вы ошиблись бы !

Фактически, 21 процент атмосферы Земли состоит из живительного кислорода (78 процентов состоит из азота, а оставшийся 1 процент - из ряда других газов). И доля этого 21 процента практически одинакова как на уровне моря, так и на высокогорье.

Большая разница не в количестве присутствующего кислорода, а скорее в плотности и давлении .

Эта часто используемая аналогия сравнения воздуха с водой («океан воздуха») хороша, поскольку все мы буквально плывем по воздуху. А теперь представьте себе это: высокое пластиковое ведро до краев заполнено водой. Теперь возьмите ледоруб и проделайте отверстие в верхней части ведра. Вода будет медленно стекать. Теперь возьмите кирку и проделайте еще одну дырку в нижней части ведра.Что просходит? Там внизу вода будет стремительно брызгать резким потоком. Причина - разница в давлении. Давление, которое оказывает вес воды внизу у дна ведра, больше, чем у верхней части, поэтому вода «выжимается» из отверстия внизу.

Точно так же давление всего воздуха над нашими головами - это сила, которая выталкивает воздух в наши легкие и выжимает из него кислород в кровоток. Как только это давление снижается (например, когда мы поднимаемся на высокую гору), в легкие поступает меньше воздуха, следовательно, меньше кислорода достигает нашего кровотока, что приводит к гипоксии; опять же, не из-за уменьшения количества доступного кислорода, а из-за уменьшения атмосферного давления.

Максимумы и минимумы

Итак, как атмосферное давление соотносится с суточными погодными условиями? Несомненно, вы видели прогнозы погоды, представленные по телевидению; встроенный в камеру метеоролог, ссылающийся на системы высокого и низкого давления. Что это вообще такое?

Короче говоря, каждый день солнечное тепло меняется по всей Земле. Из-за неравномерного солнечного нагрева температура меняется по всему земному шару; воздух на экваторе намного теплее, чем на полюсах.Таким образом, теплый легкий воздух поднимается и распространяется к полюсам, а более холодный и тяжелый воздух опускается к экватору.

Но мы живем на планете, которая вращается, поэтому эта простая картина ветра искажена до такой степени, что воздух искажен вправо от своего направления движения в Северном полушарии и влево в Южном полушарии. Сегодня мы знаем этот эффект как силу Кориолиса, и как прямое следствие этого возникают сильные спирали ветра, которые мы знаем как системы высокого и низкого давления.

В Северном полушарии воздух в областях с низким давлением движется по спирали против часовой стрелки и внутрь - например, ураганы - это механизмы Кориолиса, циркулирующие воздух против часовой стрелки. Напротив, в системах высокого давления воздух движется по спирали по часовой стрелке и наружу от центра. В Южном полушарии направление спиралевидного движения воздуха обратное.

Итак, почему мы обычно связываем высокое давление с хорошей погодой, а низкое - с неустойчивой погодой?

Системы высокого давления - это «купола плотности», которые давят вниз, тогда как системы низкого давления сродни «атмосферным долинам», где плотность воздуха меньше.Поскольку холодный воздух имеет меньшую способность удерживать водяной пар, чем теплый воздух, облака и осадки вызываются охлаждением воздуха.

Итак, при увеличении давления воздуха температура повышается; под этими куполами высокого давления воздух имеет тенденцию опускаться (так называемое «проседание») на более низкие уровни атмосферы, где температуры выше и могут удерживать больше водяного пара. Любые капли, которые могут привести к образованию облаков, будут испаряться. Конечным результатом обычно становится более чистая и сухая среда.

И наоборот, если мы уменьшаем давление воздуха, воздух имеет тенденцию подниматься на более высокие уровни атмосферы, где температуры ниже. По мере того, как способность удерживать водяной пар уменьшается, пар быстро конденсируется, и облака (которые состоят из бесчисленных миллиардов крошечных капель воды или, на очень больших высотах, кристаллов льда) будут развиваться, и в конечном итоге выпадут осадки. Конечно, мы не могли прогнозировать зоны высокого и низкого давления без использования какого-либо устройства для измерения атмосферного давления.

Введите барометр

Атмосферное давление - это сила, действующая на единицу площади под действием веса атмосферы. Чтобы измерить этот вес, метеорологи используют барометр. Именно Евангелиста Торричелли, итальянский физик и математик, доказал в 1643 году, что он может сопоставить атмосферу со столбом ртути. Он фактически измерил давление, переведя его непосредственно в вес. Прибор, сконструированный Торричелли, был самым первым барометром. Открытый конец стеклянной трубки помещают в открытую емкость с ртутью.Атмосферное давление заставляет ртуть подниматься по трубке. На уровне моря столб ртути поднимется (в среднем) на высоту 29,92 дюйма или 760 миллиметров.

Почему бы не использовать воду вместо ртути? Причина в том, что на уровне моря высота водяного столба составляет около 34 футов! С другой стороны, ртуть в 14 раз плотнее воды и является самым тяжелым веществом, которое остается жидким при обычных температурах. Это позволяет прибору иметь более удобный размер.

Как НЕ использовать барометр

Прямо сейчас у вас может быть барометр, висящий на стене вашего дома или офиса, но, скорее всего, это не трубка с ртутью, а циферблат со стрелкой, указывающей на текущий барометрический показатель. чтение давления. Такой прибор называется барометром-анероидом, который состоит из частично откачанной металлической ячейки, которая расширяется и сжимается при изменении давления, и прикреплен к механизму сцепления, который приводит в движение индикатор (стрелка) по шкале, градуированной в единицах давления, либо в дюймах. или миллибар.

Обычно на шкале индикатора вы также видите такие слова, как «Солнечный», «Сухой», «Неустойчивый» и «Бурный». Предположительно, когда стрелка указывает на эти слова, это означает, что впереди ожидаемая погода. «Солнечный», например, обычно встречается в диапазоне высокого барометрического давления - 30,2 или 30,3 дюйма. «Бурный», с другой стороны, можно найти в диапазоне низкого барометрического давления - 29,2 или ниже, возможно, даже иногда ниже 29 дюймов.

Все это могло бы показаться логичным, но все это довольно упрощенно.Например, могут быть моменты, когда стрелка будет указывать на «Солнечно», а небо вместо этого будет полностью затянуто облаками. А в других случаях стрелка будет указывать на «бурно», но вы можете увидеть солнечный свет, смешанный с голубым небом и быстро движущимися пухлыми облаками.

Как правильно пользоваться барометром

Поэтому наряду с черной стрелкой индикатора стоит обратить внимание на еще одну стрелку (обычно золотую), которую можно вручную настроить на любую часть циферблата.Когда вы проверяете свой барометр, сначала слегка постучите по передней части барометра, чтобы устранить любое внутреннее трение, а затем совместите золотую стрелку с черной. Затем проверьте несколько часов спустя, чтобы увидеть, как черная стрелка изменилась относительно золотой. Давление растет или падает? Если он падает, происходит ли это быстро (возможно, падает на несколько десятых дюйма)? Если так, то, возможно, приближается шторм. Если шторм только что прошел и небо прояснилось, барометр все еще может показывать «бурную» погоду, но если бы вы установили золотую стрелку несколько часов назад, вы почти наверняка увидели бы, что давление сейчас быстро растет, что говорит о что - несмотря на признаки шторма - приближается ясная погода.

И ваш прогноз можно еще больше улучшить, объединив ваши записи об изменении атмосферного давления с изменением направления ветра. Как мы уже узнали, воздух циркулирует по часовой стрелке вокруг систем высокого давления и против часовой стрелки вокруг систем низкого давления. Поэтому, если вы видите тенденцию к повышению давления и северо-западному ветру, вы можете ожидать, что в целом наступит хорошая погода, в отличие от падающего барометра и восточного или северо-восточного ветра, которые в конечном итоге могут привести к облакам и осадкам.

.

Атмосферное давление - Простая английская Википедия, бесплатная энциклопедия

Эта пластиковая бутылка была запечатана на высоте примерно 14000 футов и была раздавлена ​​увеличением атмосферного давления (на 9000 футов и 1000 футов), когда она была опущена до уровня моря.

Атмосферное давление - это сила в области, которая прижимается к поверхности под весом атмосферы Земли, слоя воздуха. Воздух распределен по земному шару неравномерно. Он движется, и в разное время слой воздуха в одних местах толще, чем в других.Там, где слой воздуха толще, воздуха больше. Поскольку воздуха больше, давление в этом месте выше. Чем тоньше слой воздуха, тем ниже атмосферное давление.

На большей высоте плотность и давление атмосферы ниже. Это потому, что над возвышенностями не так много воздуха, который давит вниз.

Барометры могут использоваться для измерения атмосферного давления. [1] Атмосферное давление одинаково со всех сторон.Единица измерения давления в системе СИ - гПа. Другие единицы измерения, такие как Бар (единица измерения) и торр, используются для различных целей.

.

13. АТМОСФЕРНЫЙ ПОЛЕТ

13. АТМОСФЕРНЫЙ ПОЛЕТ 13. АТМОСФЕРНЫЙ ПОЛЕТ A. НЕПРЕРЫВНЫЙ АТМОСФЕРНЫЙ ПОЛЕТ

Возникновение аэродинамического полета

Планетарные атмосферы составляют очень небольшую часть космоса; однако эти атмосферы создают некоторые очень важные проблемы в космическом полете. 1 При выходе из планетных атмосфер и входе в них гиперзвуковые скорости будут характерны для всех космических планетарных аппаратов.Таким образом, гиперзвуковая аэродинамика будет задействована на важных этапах эксплуатации.

Строго говоря, следует использовать термин «газовая динамика», а не «аэродинамика», поскольку наше рассмотрение не ограничивается атмосферой Земли. Кроме того, из-за химического воздействия «воздух», который нас интересует в гиперзвуковой аэродинамике, может сильно отличаться от наших обычных представлений о воздухе. Однако мы будем использовать термин «аэродинамика», который не исключает других газов, кроме воздуха.

Долгосрочный рейс

Аппарат для продолжительного атмосферного полета в интересующих условиях космонавтика - это гиперзвуковая планирующая ракета. 2 Хотя ракета-носитель и не является истинным летательным аппаратом, планирующая ракета гораздо более похожа на обычный самолет, чем баллистическая ракета. Это перспективный аппарат для пилотируемого гиперзвукового полета и для пилотируемого возвращения из космоса. Планирующая ракета разгоняется до начальной скорости и высоты с помощью ракеты, как у баллистической ракеты.Затем он переворачивается, превращаясь в глиссаду, и возвращается к Земле, теряя скорость и высоту по мере снижения. Для повышения точности и Избегайте низких скоростей удара, траектория полета беспилотного планирующего бомбардировщика, вероятно, завершится почти вертикальным пикированием. Схематическая траектория полета показана на рисунке 1. Обратите внимание, что вертикальный масштаб значительно увеличен, и что вся траектория полета проходит в атмосфере.

Вероятная конфигурация планирующей ракеты межконтинентальной дальности показана на рисунке 2.Это длинное, тонкое и обтекаемое транспортное средство из-за важности большой подъемной силы и низкого сопротивления. Плоскодонный корпус и опущенная носовая часть обеспечивают наилучшее аэродинамическое сопротивление в гиперзвуковом режиме. 3 Расширители по обеим сторонам корпуса по сути являются крыльями, которые увеличивают аэродинамическое сопротивление. Скорость аэродинамического нагрева вдоль глиссады достаточно мала, чтобы можно было использовать тонкостенную конструкцию, за исключением горячих точек около носа и передних кромок.


1 Уилламс, Э.П. и Карл Газли-младший, Аэродинамика для космических полетов, The RAND Corp., Paper P-1256, 24 февраля 1958.

2 Уиллламс, Э. П. и др., Ракета класса «земля-земля» большой дальности и ракеты ПВРД - аэродинамика, The RAND Corp., Rept. Р-181, 1 мая 1950 г.

3 См. Сноску 2.

85
86 АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЯ Рис.1 - Дорожка скольжения

Более высокая эффективность межконтинентальной планирующей ракеты по сравнению с баллистической ракетой иллюстрируется тем фактом, что для двух аппаратов с одинаковой полной массой и полезной нагрузкой баллистическая ракета уйдет лишь примерно на одну треть от планирующей ракеты. или, при той же дальности и полезной нагрузке, планирующая ракета будет весить всего лишь одну треть от ее веса.Если бы межконтинентальную баллистическую ракету превратить в планирующую ракету той же дальности и начальной полной массы, полезная нагрузка могла бы быть в 8-10 раз больше. Конечно, есть много других факторов, которые влияют на выбор между баллистическими ракетами и планерами.

Пилотируемая планирующая ракета включает в себя, по существу, те же конструктивные соображения, что и планируемая часть ее траектории, с дополнительным требованием к отсеку, пригодному для размещения человека. Однако этап подъема ракеты и приземления должен быть изменен, чтобы быть совместимым с человеческой терпимостью и безопасностью.Ускорение при взлете типичной беспилотной планирующей ракеты или баллистической ракеты может начинаться на половину g выше нормальной силы тяжести и увеличиваться, возможно, до 10 g при сгорании топлива. Для жилого транспортного средства максимальное ускорение может быть снижено до допустимого предела - возможно, 4 g - за счет увеличения времени полета с двигателем, то есть более постепенного ускорения.


АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЕ 87 Рис.2 - Типовая планирующая ракета

Конечная часть пилотируемого полета должна включать, по существу, посадку обычного самолета или подъем с парашютом, чтобы иметь место допустимое замедление.Однако баллистический вход в атмосферу, за исключением очень мелких спусков, сопровождается очень низкими замедлениями - обычно менее 1g. Хотя посадки с включенным питанием, похоже, не представляют непреодолимых проблем, как было продемонстрировано современными самолетами вертикального взлета и посадки, потеря веса ракетного транспортного средства, вероятно, будет чрезмерной.

Планирующая ракета, концептуально представленная в этой стране почти десять лет назад, 4 , тесно связана с ракетой-носителем, которая была впервые предложена Зенгером и Бредтом. 5 Путь перехода похож на путь плоского камня, прыгающего по поверхности пруда; транспортное средство грузоподъемного типа спускается по баллистической траектории над атмосферой; при входе в атмосферу, подъемная сила создается с динамическим давлением, заставляя транспортное средство разворачиваться вверх и снова выбрасываться из атмосферы. Таким образом, траектория пропуска состоит из последовательности баллистических траекторий, за каждой из которых следует выход.


4 См. Сноску 2, стр.85.

5 Зенгер, Э. и И. Бредт, Über einen Raketenantrieb für Fernbomber, ZWB, UM Nr. 3533, Берлин, 1944 г. (Доступен как CGD-32, «Ракетный привод для бомбардировщиков дальнего действия»). С точки зрения чистой механики полета скиповая ракета превосходит как баллистические, так и планирующие аппараты. Однако увеличенный вес конструкции в результате более высоких коэффициентов нагрузки и более высоких пиковых аэродинамических скоростей нагрева скиповой ракеты снижает ее полезную дальность ниже, чем у планирующей ракеты.Кроме того, высокие коэффициенты нагрузки, присущие оптимальному пути пропуска, исключают его использование для пилотируемых транспортных средств.

Как показывают эти краткие рассуждения, возможные гиперзвуковые самолеты в первую очередь относятся к планирующему типу ускорителей. Ожидается, что разработка гиперзвукового маршевого самолета должна дождаться появления эффективной поддерживающей силовой установки, такой как гиперзвуковой прямоточный воздушно-реактивный двигатель.

Начальные траектории полета космического корабля будут практически идентичны баллистических и планирующих ракет.

Различие между сверхзвуковым и гиперзвуковым режимами полета состоит в следующем: нечетко; но для наиболее интересных автомобилей разделительная линия проходит близко до 5 Маха, что в пять раз превышает скорость звука. В гиперзвуковом потоке ударная волна волна лежит близко к поверхности кузова автомобиля; тогда как в сверхзвуковом поток носовой ударной волны находится довольно далеко от тела.

Во время полета транспортного средства в атмосфере часть тела кинетическая энергия постоянно преобразуется в тепловую энергию в воздухе, и часть этой тепловой энергии передается телу.Скорость преобразование кинетической энергии в тепловую и скорость передачи тепла к поверхности транспортного средства увеличиваются примерно напрямую с плотностью воздуха и очень резко с увеличением скорости автомобиля. Таким образом, скорость нагрева поверхности наиболее серьезен, когда высокие скорости возникают на малых высотах, и может стать более жесткие, чем любые скорости нагрева при теплопередаче технологии.

Поскольку воздух не ведет себя как простая жидкость при гиперзвуковом полете условиях гиперзвуковая аэродинамика намного сложнее, чем низкоскоростная аэродинамика.Необычные химические и физические явления происходят в сильно нагретом воздухе, прилегающем к гиперзвуковому аппарату. Высота температуры воздуха вызывают возбужденные молекулярные состояния, радиацию, химические реакции, ионизация и т. д., приводящие к эффектам, которые еще больше усложняют общая проблема теплопередачи, а также может вызвать трудности для радио передачи к автомобилю и обратно. 6-8

B. ПРОНИКНОВЕНИЕ АТМОСФЕРЫ Типы записей

Проблема проникновения в атмосферу возникает у любого транспортного средства, которое приближается к планетарной атмосфере и для чего физическое восстановление или выживание желательно на металлической поверхности.Интересующие случаи исходят из несложно звучащие ракеты к пилотируемым кораблям, возвращающимся с межпланетных поездки. На рисунке 3 показаны несколько типов путей входа в атмосферу.


6 Голдберг, П. А., Электрические свойства гиперзвуковых ударных волн и их влияние на авиационные радио и радары, Boeing Airplane Co., Отчет № D2-1997, 2 июля 1957.

7 Сиско, В. Б. и Дж. М.Фискин, Влияние относительно сильных полей на распространение электромагнитных волн через плазму, генерируемую гиперзвуком, Douglas Aircraft Co., Отчет № LB-25642, 22 ноября 1957 г.

8 Робертс К. А., В. Б. Сиско и Дж. М. Фискин, Теория равновесных плотностей электронов и частиц за нормальными и наклонными ударными волнами в воздухе, Douglas Aircraft Co., отчет № LB-25872, сентябрь 1 1958 г.


АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЕ 89 Инжир..3 -Различные типы входа в атмосферу

Видно, что только что рассмотренный планер спускается через атмосферу более постепенным, чем баллистическая ракета.

Спуск со спутниковой орбиты может осуществляться либо в режиме ожидания для орбиты распадаться под действием аэродинамического сопротивления или с помощью торможение ракеты («свалка») для перехода с орбиты спутника на спуск путь. В зависимости от аэродинамических характеристик спускающегося транспортного средства, путь входа может варьироваться от постепенного глиссирующий аппарат на более крутой путь баллистической машины.

Транспортное средство, прибывающее из космоса, приблизится к планете с скорость, которая, по крайней мере, равна скорости убегания, характерной для планета. (Вблизи Земли убегающая скорость составляет около 37 000 футов в секунду.) Представляют интерес несколько видов заходных орбит. Это показано на рисунке 4. Прямое попадание в планету. будет включать входной путь, подобный пути баллистической ракеты, но с более высокой скоростью.Более постепенное проникновение может быть достигнуто либо путем приближения к планете по касательной, либо путем выхода на орбиту спутника перед спуском. Переход на спутник орбита может быть достигнута либо с помощью управления реакцией, либо с помощью процедуры аэродинамического торможения, показанной на рисунке 5.


90 АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЯ Рис. 4 - Пути захода на посадку из космоса АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЕ 91 Рис.5 Аэродинамическое торможение, переход с параболической орбиты сближения на орбиту спутника

Хотя нагревание и замедление, сопровождающие вход в атмосферу, вызывают серьезные конструктивные проблемы, присутствие планетарной атмосферы является преимуществом, поскольку она действует как подушка для снижения скорости космического аппарата до безопасной посадочной скорости.Без атмосферы, как и в случае приземления на Луну, приходится прибегать к большему весу - торможению ракеты.

Замедление и нагрев

Тело, приближающееся к планетарной атмосфере, обладает большим количеством энергии; и одной из наиболее важных проблем проникновения в атмосферу является рассеяние этой энергии таким образом, чтобы не было катастрофических для транспортного средства ни во время проникновения, ни при приземлении.Если бы вся энергия транспортного средства была преобразована в тепло внутри самого тела, в большинстве случаев этого было бы более чем достаточно для испарения всего тела. Выживание многих природных метеоритов однако это очевидный признак того, что не вся энергия попадает в тело. Фактически, начальная энергия тела преобразуется посредством механизма газодинамического сопротивления в тепловую энергию в воздухе вокруг тела; и только часть этой энергии передается телу в виде тепла. Доля исходной энергии, которая проявляется в теле в виде тепла, зависит от характеристик потока вокруг тела. тело.

37162 ° - 59 - 7


92 АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЯ

Основными эффектами, сопровождающими попадание в атмосферу, являются снижение скорости транспортного средства, сопровождающееся значительными тормозными нагрузками и заметным нагревом. Как замедление, так и нагревание являются наиболее серьезными, когда имеется сочетание высокой плотности атмосферы и высокой скорости транспортного средства, т.е. е., когда высокие скорости могут сохраняться до малых высот. Это условие наиболее вероятно, когда скорость приближения очень высока и / или когда вход находится под большим углом.С другой стороны, более низкая начальная скорость или малый угол входа (тангенциальный подход) имеют тенденцию к ограничивайте высокие скорости на больших высотах. Начальная скорость входа определяется гравитационными характеристиками планеты и типом миссии транспортного средства, т.е. е., возвращение со спутниковой орбиты, возвращение из космоса и т. д .; и, следовательно, обычно нужно просто принять начальную скорость входа. Однако угол входа можно выбрать, чтобы снизить серьезность условий входа.

Замедление также может быть вызвано высоко в атмосфере из-за использования тела с большим сопротивлением и / или некоторой аэродинамической подъемной силой. Высокое лобовое сопротивление вызывает замедление на больших высотах, а аэродинамическая подъемная сила позволяет более плавно спускаться. Тонкое тело с низким сопротивлением, показанное на рис. 6а, будет испытывать более сильные нагревательные и замедляющие нагрузки, чем тупое тело на рис. 6b. Однако если бы последнее тело было сориентировано в положении, показанном на фиг. 6с, развивалась бы подъемная сила; и это предполагает более пологий спуск с меньшим нагревом и нагрузкой.

Рис.6-Аэродинамические силы на различных телах
АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЕ 93

Влияние свойств атмосферы

Физические и химические характеристики атмосферы планеты также сильно влияют на характеристики входа. Чтобы получить первое приближение к газодинамическим силам и нагреву, достаточно знать изменение плотности в атмосфере. Приблизительное изменение плотности атмосферы Земли и предполагаемое изменение плотности атмосферы Венеры и Марса показаны на рисунке 7.Атмосфера Венеры, которая, по оценкам, состоит примерно из 10 процентов азота и 90 процентов углекислого газа, несколько более плотная, чем на Земле. атмосферы, но меняется аналогичным образом с высотой. Атмосфера Марса, которая, по оценкам, содержит около 95 процентов азота и 5 процентов углекислого газа, значительно менее плотна, чем атмосфера Земли на уровне поверхности, но спадает гораздо более постепенно с увеличением высоты и на самом деле более плотная на больших высотах. Более постепенное изменение плотности марсианской атмосферы фактически делает ее «более мягкой», так что вход в нее будет сравнительно менее серьезным.

Рис.7 - Распределение плотности в планетных атмосферах94 АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЕ

Простая аналогия

Влияние некоторых из этих факторов на условия входа в атмосферу можно визуализировать с помощью простой аналогии. Представьте себе проблему аварийной посадки легкого самолета в густом лесу (рис. 8). Вблизи земли деревья имеют толстые стволы; чем выше, тем стройнее туловище и конечности; а на верхушках деревьев встречаются только тонкие веточки и ветви.Таким образом, лес аналогичен плотной атмосфере на малых высотах и ​​разреженной на больших высотах. Когда самолет врезается в деревья, он замедляется из-за ударов о часть деревьев (аэродинамическое сопротивление) и страдает повреждением поверхности из-за истирания ветками и ветками (аэродинамический нагрев). Если самолет на большой скорости вертикально нырнет в лес, он пройдет сквозь тонкие верхние ветви без особого замедления и все еще будут двигаться с высокой скоростью, когда достигнут тяжелых нижних ветвей.Следовательно, замедление и абразивный износ поверхности будут большими. Однако, если будет предпринята попытка снизить скорость и скользить в верхушки деревьев под небольшим углом, самолет будет замедляться медленнее в тонких верхних ветвях и будет двигаться с относительно меньшей скоростью, когда наконец достигает тяжелых нижних стволов. Еще лучший подход может быть достигнут, если подтянуться непосредственно перед тем, как ударить по верхушкам деревьев, чтобы самолет имел тенденцию удерживать высоту на верхушках деревьев (то есть аэродинамический подъем).

Эффекты сопротивления, характерные для тела, можно визуализировать, изображая приземление двух разных самолетов, например. г., современный истребитель и истребитель Первой мировой войны. Тяжелый современный истребитель с низким сопротивлением мог бы с большой скоростью проникать в тяжелые нижние ветви. Относительно легкая, устаревшая авиакомпания с большим лобовым сопротивлением будет замедлена при сравнительном комфорте легких верхних ветвей.

Эффекты распределения плотности в атмосфере планеты можно визуализировать, рассматривая другой тип дерева.Например, более «мягкая» марсианская атмосфера с более низкой плотностью на уровне моря и более постепенным изменением плотности с высотой, чем атмосфера Земли, может быть визуализирована как лес более высоких деревьев с меньшими стволами и более постепенным изменением ветвей. размер с высотой.


АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЕ 95
АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЯ 96C. ДИНАМИКА ПРОНИКНОВЕНИЯ АТМОСФЕРЫ

Три основных типа проникновения в атмосферу, проиллюстрированные на рисунке 3-1: крутой спуск при прямом входе из космоса, более постепенный спуск при уменьшении орбиты спутника и очень постепенное глиссирующее или подъемное снижение - сопровождаются различными схемами спуска. замедление. 9

Прямой спуск

Показано влияние угла входа на эту схему замедления. на рисунке 9 показано тело, подобное спутнику Vanguard. Угол входа 90 ° указывает на вертикальный спуск. (угол между автомобилем путь на входе и местный горизонт.) Максимальное замедление при прямом входе не зависит от характеристик сопротивления тело.Это зависит только от траектории, начальной скорости, и атмосферные характеристики. Только высота, на которой происходит максимальное замедление, зависит от характеристик сопротивления тела.

Рис.9-Скорость и замедление при прямом входе в атмосфера Земли из космоса под разными углами


W
C D A C
= 10 фунтов / кв. Фут

Характер скорости и замедления для одного и того же тела показан на рисунке 10 для вертикального проникновения в атмосферы Венеры, Земли и Марса.Разные гравитационные притяжения объясняют разные начальные скорости, которые равны скоростям убегания. Эффект изменения плотности атмосферы проявляется в форме и положении кривых. Более плотная атмосфера Венеры приводит к замедлению на большей высоте; однако изменение скорости с высотой и максимальное замедление составляет около


9 Газли, младший, К., Замедление и нагрев тела, входящего в планетную атмосферу из космоса, Перспективы космонавтики.Pergamon Press, 1958 (материалы Первого ежегодного симпозиума по астронавтике Управления научных исследований ВВС США).


АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЕ 97

то же, что и для Земли, из-за аналогичного изменения плотности. Более постепенное изменение плотности марсианской атмосферы приводит к более постепенному изменению скорости с высотой и более низкому пиковому замедлению.

Рис. 10 - Скорость и замедление при прямом входе из пространство при = 90 в трех планетных атмосферах
W
C D A C
= 10 фунтов / кв. Фут

Интересующая здесь фаза спада орбиты спутника - это самая последняя часть, где заметны нагрев и замедление, скажем, около последних 2000 миль и последних нескольких минут срока службы спутника.Этой фазе предшествует гораздо более длительный период, охватывающий множество оборотов, во время которых спутник совершает очень постепенную спираль, которая становится более круговой. Скорость потери энергии транспортным средством из-за аэродинамического сопротивления достаточно мала, так что кинетическая энергия (энергия движения) и потенциальная энергия (энергия высоты) транспортного средства настраиваются на мгновенную «равновесную» орбиту. В этом процессе потенциальная энергия уменьшается, а кинетическая энергия увеличивается. Таким образом, скорость спутника фактически возрастает в начальные фазы орбитального распада.

Схема замедления на последней фазе спуска очень похожа на схему при прямом спуске под очень небольшим углом. Для примера Vanguard, использованного выше, пиковое замедление будет около 9 g.

подъемный спуск

Подъемный спуск включает в себя еще более постепенное проникновение в атмосферу, и здесь угол траектории снова подстраивается под силы, действующие на транспортное средство, и, как правило, довольно мал - порядка нескольких


98 АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЯ

десятые доли градуса.В этом случае замедление не проходит через резкий пик, а постепенно увеличивается до максимума. В подъемном спуске замедления могут быть ограничены относительно небольшими значениями.

Дальность и время спуска

Следует отметить, что более постепенные спуски требуют более продолжительного времени и покрывают большие диапазоны, чем более крутые спуски. Например, начав с тех же высот и скоростей, прямой спуск может пройти расстояние всего в несколько сотен миль и совершиться примерно за полминуты; орбитальный распад может покрыть расстояние в несколько тысяч миль за 5 или 10 минут; и подъемный спуск мог бы проехать от 5000 до 10 000 миль примерно за 2 часа.Постепенный спуск включает снижение скорости и, как следствие, диссипацию энергии в течение длительного периода времени.

Примеры замедляющих нагрузок Некоторые примеры тормозных нагрузок, которые могут возникнуть при различных видах въезда, перечислены в таблице 1. Их следует сравнить с допустимой нагрузкой примерно от 10 до 15 г для пилотируемых транспортных средств.

ТАБЛИЦА 1. - Максимальное замедление во время различных типы проникновения в атмосферу [Значения даны в земных g]
«Планета»
Прямой вход на выходе
скорость
Прямой вход на орбиту
скорость

Запись
по
распад
из
спутник
орбита
Въезд подъемной машины
на орбитальной скорости
= 5 20 90 = 5 20 90 Д / Д = 1 2 5

ВЕНЕРА........
ЗЕМЛЯ ........
МАРС ..........

28,6
28,3
1,6

112
111
6,3

326
324
18,3

14.3
14,2
.8

56
55,5
3,2

163
162
9,2

8,9
9,5
1,4

0.88
1,0
0,38

0,44
.5
.2

0,18
.2
.07

Нагрев при проникновении в атмосферу

Снижение кинетической и потенциальной энергии транспортного средства во время спуска сопровождается увеличением тепловой энергии в окружающем воздухе, часть которой передается поверхности транспортного средства.Часть этой энергии, которая достигает поверхности транспортного средства в виде тепла, имеет первостепенное значение для проектировщика. Эта доля, или эффективность преобразования, зависит от формы автомобиля, его скорости и высота - и, наконец, механизм передачи тепла между горячим газом и поверхностью транспортного средства. На очень больших высотах тепловая энергия вырабатывается непосредственно на поверхности транспортного средства, и половина потерянной энергии транспортного средства проявляется в виде тепла в теле. На меньших высотах в воздухе между ударной волной и телом появляется тепловая энергия.Тепло передается от горячего воздуха к телу за счет теплопроводности и конвекции через вязкий пограничный слой. Излучение горячего газа также может вносить заметный вклад в нагрев поверхности.


АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЕ 99D. ТЕМПЕРАТУРА, МОЩНОСТЬ НАГРЕВА И ЗАЩИТА ОТ НАГРУЗКИ

Нагрев автомобиля в данном приложении определяет тип необходимой системы защиты поверхности. 10,11

Сверхзвуковые летательные аппараты и гиперзвуковые планирующие ракеты работают, по существу, при постоянной температуре обшивки, и транспортное средство должно быть сконструировано таким образом, чтобы тепло отводилось с той же средней скоростью, с которой оно приобретается.Температура, достигаемая различными частями тела, будет зависеть от радиационных характеристик поверхности транспортного средства и скорости местного нагрева.

Во время полета баллистической ракеты температура кожи сильно колеблется. Во время всплытия в атмосфере кожа нагревается умеренно, как в сверхзвуковом самолете. Нагрев падает до нуля при выходе из атмосферы, и кожа охлаждается за счет излучения тепла, когда ракета движется по своей траектории.Во время спуска нагрев сильно увеличивается, и кожа достигает максимальной температуры где-то во время этой части полета при входе в атмосферу.

Системы поверхностного охлаждения

Способы защиты полезной нагрузки от сильного внешнего нагрева include-

    Утолщение кожи , для поглощения тепла большей массой материала в случае кратковременного нагрева и для компенсации уменьшенного прочность материала при повышенных температурах в случае стационарных или равновесных условий.

    Изоляция внешней поверхности , чтобы уменьшить передачу внешнего тепла в отсек полезной нагрузки и конструкцию, разделенную изоляцией. Кроме того, более высокие температуры поверхности снижают нагрев поверхности из-за повышенного радиационного охлаждения поверхности.

    Охлаждение внутренней поверхности кожи , поглощающее передаваемое тепло путем откачивания внутренней воды или нагрева охлаждающей жидкости.

    Транспирационное охлаждение , прокачка газа или пара через пористая кожа, отводящая тепло и изолирующая автомобиль.

    Абляционное охлаждение , отводящее тепло и изолирующее путем испарения материала поверхности корпуса транспортного средства.

    Комбинации этих .

Выбор наиболее эффективного метода защиты от повторного вторжения Отопление для данной миссии, конечно, должно основываться на детальных проектных исследованиях.

Визуальные явления

Некоторое представление о впечатляющем характере высокоскоростного входа в атмосферу может быть получено из следующей выдержки из отчета о повторном входе


10 Газли мл.К., Аспекты теплообмена при входе в атмосферу баллистических ракет большой дальности, The RAND Corp., Rept R-273, 1 августа 1954 г.

11 Массон Д. Дж. И Карл Газли мл., Системы защиты поверхности и охлаждения для высокоскоростного полета, Обзор авиационной техники, т. 15, No. 11, ноябрь 1956.

100 АСТРОНАВТИКА И ЕЕ ПРИМЕНЕНИЯ

носовой обтекатель и связанные с ним конструкции после стрельбы из армии Ракета Юпитер 18 мая 1958 г .: 12

    Comdr.Р. Г. Браун, капитан корабля USS Stickell , был первым, кто заметил феномен входа в атмосферу. В то время, когда он заметил свет, он казался ярким, как звезда третьей величины. Появление произошло почти точно там, где исправленное положение было предсказано.

    В течение 3 секунд после того, как был замечен первый входящий свет, феномен превратился в 3 отдельных объекта. Самый яркий объект выглядел похожим на огромную магниевую вспышку, которая, как предполагалось, была ускорителем.Свет, излучаемый этот объект определенно пульсировал, как будто тело катилось в космосе. Когда-то траектория тела почти совпадала с траекторией планеты Юпитер. Было подсчитано, что яркость по крайней мере в 1000 раз превышала яркость планеты.

    Вторым по яркости визуальным объектом был красивый сине-зеленый цвет. Предполагалось, что это приборный отсек. Сине-зеленый свет мог появиться из-за меди и магния в этом разделе.Фактическая траектория движения приборного отсека на стадии горения была намного короче, чем у ускорителя и носового обтекателя. Сразу после середины видимого следа сине-зеленый свет стал почти белым, а затем погас.

    Носовой конус никогда не достигал белого цвета. Излучение в видимой области спектра имело оранжево-красный цвет. Обзорность носового обтекателя в пространстве начиналась немного позади ракеты-носителя, а затем двигалась впереди ракеты-носителя. За последние несколько секунды видимого полета ракета-носитель и носовой обтекатель двигались за большим кучевым облаком к югу от U.С. С. Стикелл . Излучение было настолько интенсивным, что все облако осветилось. Именно на этом участке полета ракета-носитель перестала светиться и стала невидимой. Было видно, что носовой обтекатель появляется из-за облака, и его отслеживали еще пару секунд, прежде чем он достаточно остыл, чтобы стать невидимым. Общее время видимости с позиции USS Stickell составляло примерно 27 секунд.


12 Вудбридж Д.Д. и Р. В. Хембри, Операция Газлайт, Ракеты Юпитер, Агентство армейских баллистических ракет AM-5, Хантсвилл, Алабама, 5 июня 1958 года.


ПРЕДЫДУЩИЙ | СЛЕДУЮЩИЙ | ДОПОЛНИТЕЛЬНЫЕ ССЫЛКИ | ПРИЛОЖЕНИЕ.

Смотрите также