С высотой атмосферное давление повышается


2. Суточный и годовой ход атмосферного давления. Изменение давления с высотой

Суточный ход атмосферного давления

Суточное изменение атмосферного давления связано с изменением температуры воздуха и с его перемещением. При нагревании воздух увеличивается в объёме, становится менее плотным, его масса уменьшается — атмосферное давление понижается. Холодный воздух, наоборот, уменьшается в объёме, становится более плотным, масса его увеличивается — атмосферное давление повышается.

При повышении температуры воздуха атмосферное давление падает, при понижении — возрастает. При понижении температуры на \(1\) °С атмосферное давление повышается на \(0,28\) мм рт. ст.

Самое высокое атмосферное давление в течение суток наблюдается ночью, самое низкое — после полудня.

Годовой ход атмосферного давления

Над сушей максимальное атмосферное давление наблюдается зимой, а минимальное — летом. Над океанами в связи с медленным нагреванием и остыванием воды минимум атмосферного давления наблюдается зимой, а максимум — летом.

Изменение атмосферного давления с высотой

Чем больше высота столба атмосферного воздуха, тем выше атмосферное давление. Следовательно, с высотой атмосферное давление понижается.

Атмосферное давление понижается в среднем на \(1\) мм рт. ст. на каждые \(10,5\) м подъёма.

 

С помощью показаний барометра можно определить относительную высоту местности.

Как с высотой изменяется атмосферное давление. Формула, график

Не все знают, что на разной высоте давление атмосферы отличается. Существует даже специальный прибор для измерения и давления, и высоты. Называется он барометр-альтиметр. В статье мы подробно изучим, как с высотой изменяется атмосферное давление и при чем тут плотность воздуха. Рассмотрим эту зависимость на примере графика.

Давление атмосферы на разных высотах

Атмосферное давление зависит от высоты. При ее увеличении на 12 м давление уменьшается на 1 мм ртутного столба. Этот факт можно записать с помощью такого математического выражения: ∆h/∆P=12 м/мм рт. ст. ∆h — это изменение высоты, ∆P — изменение атмосферного давления при изменении высоты на ∆h. Что из этого следует?

Из формулы видно, как с высотой изменяется атмосферное давление. Значит, если мы поднимемся на 12 м, то АД уменьшится на 12 мм ртутного столба, если на 24 м — то на 2 мм ртутного столба. Таким образом, измеряя атмосферное давление, можно судить о высоте.

Миллиметры ртутного столба и гектопаскали

В некоторых задачах давление выражается не в миллиметрах ртутного столба, а в паскалях или гектопаскалях. Запишем вышеприведенное соотношение для случая, когда давление выражено в гектопаскалях. 1 мм рт. ст. =133,3 Па =1,333 гПа.

Теперь выразим соотношение высоты и атмосферного давления не через миллиметры ртутного столба, а через гектопаскали. ∆h/∆P=12 м/1,333 гПа. После вычисления получим: ∆h/∆P=9 м/гПа. Выходит, что когда мы поднимаемся на 9 метров, то давление уменьшается на один гектопаскаль. Нормальное давление — это 1013 гПа. Округлим 1013 до 1000 и примем, что на поверхности Земли именно такое АД.

Если мы поднимаемся на 90 м, как с высотой изменяется атмосферное давление? Оно уменьшается на 10 гПа, на 90 м — на 100 гПа, на 900 м — на 1000 гПа. Если на земле давление в 1000 гПа, а мы поднялись на 900 м вверх, то атмосферное давление стало нулевым. Так что, получается что атмосфера заканчивается на девятикилометровой высоте? Нет. На такой высоте есть воздух, там летают самолеты. Так в чем же дело?

Связь плотности воздуха и высоты. Особенности

Как с высотой изменяется атмосферное давление вблизи поверхности Земли? На этот вопрос уже ответила картинка выше. Чем больше высота, тем меньше плотность воздуха. Покуда мы находимся недалеко от поверхности земли, изменение плотности воздуха незаметно. Поэтому на каждую единицу высоты давление уменьшается примерно на одно и тоже значение. Два записанные нами ранее выражения нужно воспринимать как правильные, только если мы находимся недалеко от поверхности Земли, не выше 1-1,5 км.

График, показывающий как атмосферное давление изменяется с высотой

Теперь перейдем к наглядности. Построим график зависимости давления атмосферы от высоты. При нулевой высоте P0=760мм рт. ст. Из-за того, что с ростом высоты давление уменьшается, атмосферный воздух будет менее сжат, его плотность станет меньше. Поэтому на графике зависимость давления от высоты не будет описываться прямой линией. Что это значит?

Как с высотой изменяется атмосферное давление? Над поверхностью земли? На высоте 5,5 км оно уменьшается в 2 раза (Р0/2). Оказывается, что если мы поднимемся еще на такую же высоту, то есть на 11 км, давление уменьшится еще вдвое и будет равно Р0/4 и т. д.

Соединим точки, и мы увидим, что график — это не прямая, а кривая. Почему, когда мы записывали соотношение зависимости, складывалось впечатление, что на высоте 9 км атмосфера заканчивается? Мы считали, что график является прямой на любых высотах. Это было бы так, если бы атмосфера была жидкой, то есть если бы ее плотность была постоянной.

Важно понимать, что этот график является лишь фрагментом зависимости на малых высотах. Ни на какой точке этой линии давление не снижается до нуля. Даже в глубоком космосе существуют молекулы газов, которые, правда, не имеют отношение к земной атмосфере. Ни в одной точке Вселенной не существует абсолютного вакуума, пустоты.

Атмосферное давление. Урок 13

Земля путём силы гравитации притягивает к себе молекулы воздуха. Они имеют вес, а значит создают давление как внутри самой атмосферы, так и на её границе с различными телами на земной поверхности. Атмосферное давление – это сила, с которой воздух давит на земную поверхность и на все находящиеся на ней предметы.

Атмосферное давление изменяется с высотой и зависит от погодных условий: температуры воздуха и перемещения воздушных масс в вертикальном направлении (конвекции). Вблизи земной поверхности оно приблизительно равно 105 Па (в интернациональной системе (СИ) давление измеряется в Паскалях – русское Па, международное – Pa).

За нормальное атмосферное давление принято давление ртутного столба высотой 76 см сечением в 1 см2 на уровне моря на широте 45° при температуре 0°С. Оно равно 760 мм рт. ст.(101325 Па, но реально берётся 100 000 Па) – это 1 атмосфера (атм.).




Атмосферное давление по-традиции измеряют в миллиметрах ртутного столба, современные аналоги этой меры – миллибары и гектопаскали. Один Паскаль – это давление силой в 1 Ньютон (Н), приходящееся на площадь 1 м2.

Интересно, что среднее давление атмосферы на поверхности Марса в 160 раз меньше, чем у поверхности Земли.

Как заметить атмосферное давление?

Хотя молекулы газа не имеют запаха и цвета, они постоянно взаимодействуют с рецепторами нашей кожи, сдавливают со всех сторон все предметы, заполняют пустоты, а их быстрое перемещение в горизонтальном направлении, называемое ветром, может сбить нас с ног. Доказать, что атмосферное давление существует, можно при помощи простых опытов.

Опыт 1 – «Непроливайка»

В стакан налить воды до краёв. Прикрыть его листком плотной бумаги и, придерживая бумагу ладонью, быстро перевернуть стакан кверху дном. Убрать ладонь. Вода из стакана не выльется, так как на бумагу снизу давит атмосфера.

Объяснение: фраза «на нас давит столб атмосферного воздуха», иногда употребляемая, в том числе и в школьных учебниках, некорректна. Она произносится по ассоциации с силой давления, действующей со стороны твёрдого тела. Эта сила действует на тела, расположенные ниже, и не действует на тела сбоку или, тем более, сверху данного тела. Иное дело давление жидкости или газа.

По закону Паскаля давление передаётся не только в точки на дне сосуда, но также и в точки на стенках и крышке. Силы гидростатического и атмосферного давлений действуют перпендикулярно произвольно ориентированной поверхности тела, контактирующей со средой, и могут иметь любое направление.

Воздух, давящий на бумагу снизу наполненного стакана – это доказательство несостоятельности такой ассоциации. Интересно, что если стакан наполнить водой только наполовину, то оставшийся воздух будет давить с такой же силой, как и наружный, и бумага не удержит воду (и воздух) в стакане.

Опыт 2 – «Сухим из воды»

Положить на плоскую тарелку монету или металлическую пуговицу и налить воды. Монета окажется под водой. Наша задача – выловить монету голыми руками, не замочив их.

Зажгите внутри сухого стакана бумагу и, когда воздух нагреется, опрокиньте стакан на тарелку рядом с монетой так, чтобы монета не очутилась под стаканом. Ждать придётся недолго. Бумага в стакане сразу погаснет, и воздух начнёт остывать. По мере его остывания вода будет втягиваться стаканом и вскоре вся соберётся там, обнажив дно тарелки.

Объяснение: когда воздух в стакане нагрелся, он расширился, как и все нагретые тела, избыток его нового объёма вышел из стакана. Когда же оставшийся воздух начал остывать, его стало недостаточно, чтобы в холодном состоянии оказывать прежнее давление, уравновешивать наружное давление атмосферы. Теперь вода под стаканом испытывает на каждый сантиметр своей поверхности меньшее давление, чем в открытой части тарелки. Неудивительно, что она вгоняется под стакан, втискиваемая туда избытком давления наружного воздуха. Вода вдавливается воздухом!

По этой же теме посмотрите эксперимент программы «Галилео».

Почему мы не чувствуем атмосферное давление?

Зная, что 1 м3 воздуха при температуре 0° на уровне моря весит 1,3 кг, легко подсчитать, что на крышу дома, имеющую площадь, например 100 м², атмосфера давит с силой 107 Н, что соответствует весу тела массой 1000 т. Однако крыша дома не проваливается.

Площадь спины лежащего на пляже человека заведомо больше 0,2 м2; следовательно, атмосфера давит на спину человека с силой, большей чем 20 000 Н, что соответствует камешку массой 2 т. Однако человек вообще не ощущает никакого давления сверху.

Опыт «Сухим из воды» демонстрирует нам ещё и доказательство внутреннего давления, уравновешивающего наружное давление атмосферы.

Мы не чувствуем давления воздуха, потому что давление атмосферы равномерно распределяется со всех сторон и потому что внутри нас есть такое же давление воздуха и жидкости, а адаптационные способности организма постоянно уравновешивают внутреннее давление, подстраивая его под изменение атмосферного. Но адаптации проходят только в небольшом интервале. 

Если люди живут длительное время на большой высоте, то их организм приспосабливается как к меньшему количеству кислорода, так и к более низкому давлению. Самые высокогорные поселения мира:

  • Ла-Ринконада (Перу) – 5100 м;
  • Эль-Альто (Боливия) – 4150 м;
  • Потоси (Боливия) – 4090 м;
  • Лхаса (Т ибет) – 3650 м;
  • Намче-базар (Непал) – 3450 м;
  • в России это Куруш (Дагестан) – 2600 м.
Посёлок золотоискателей Ла Ринконада-Ананея, 5100 м.
Автор: IJISCAY

А вот рыбы, живущие на глубине океана, привыкли к более высокому давлению, и быстро перестроиться их организм не способен. Их тело адаптировалось к нему, и внутреннее давление его намного выше 1 атм. Поэтому когда их достают из глубины, они взрываются из-за высокого внутреннего давления. То же произошло бы и с человеком в безвоздушном пространстве (в космосе).

Фильм по теме «Атмосферное давление и самочувствие человека».

Из истории открытия знаний о весе, давлении воздуха и изобретении барометра

О том, как измерить атмосферное давление, догадался итальянский математик и физик, выпускник иезуитского колледжа Э. Торричелли. Вместе с В. Вивиани – юным учеником Галилея – он провёл опыты по его измерению. Торричелли тоже был одним из последних учеников Галилея, и основываясь на его догадках доказал, что воздух имеет вес и оказывает давление.

Эванжелиста Торричелли и его барометр.
Автор: Saperaud~commonswiki

Торричелли впервые открыто выступил против догм Аристотеля. Рассуждая о насосе, он заявил, что

«прежде всего вода поднимается вслед за поршнем вовсе не потому, что «природа боится пустоты», просто воду гонит в насос давление, которое оказывает воздух на поверхность реки. В трубе же насоса, под поршнем, воздуха нет, поэтому вода входит в неё до тех пор, пока вес водяного столба в трубе насоса не уравновесит наружное давление воздуха».

Но доказал он это немного позже. Предложенный им опыт был осуществлён в 1643 г. В этом опыте использовалась запаянная с одного конца стеклянная трубка длиной около 1 м. Её наполняли ртутью и, закрыв пальцем (чтобы ртуть не выливалась раньше времени), перевернув, опускали в широкую чашку со ртутью.

Часть ртути из трубки выливалась, и в её верхней части образовывался вакуум (первая настоящая пустота, обнаруженная на Земле – Торричеллиева пустота). При этом высота столба ртути в трубке оказалась равной примерно 760 мм (если отсчитывать её от уровня ртути в чашке). Воздух давил на ртуть чашки и не давал вылиться из трубки.

Учёный также догадался, что давление атмосферы связано с изменением погоды. Наблюдая за высотой ртутного столба в трубке, Торричелли заметил, что атмосферное давление непостоянно и зависит от «теплоты или холода». Столбик в трубке то опускался, то поднимался, указывая на нужное деление шкалы. Вот почему в качестве одной из единиц давления взят миллиметр ртутного столба (мм рт. ст.). Тяжесть по-гречески «барос», и прибор Торричелли стали называть барометром.

Принцип действия барометра Торричелли

О давлении и весе воздуха почти одновременно с Торричелли догадался и другой известный учёный того времени – Декарт. Он объяснил, почему из продырявленного на дне флакона при закрытой крышке духи не вытекают, а при открытой вытекают, именно разностью в давлении воздуха на разные площади поверхности. Когда крышка флакона закрыта, поверхностное натяжение воды на небольшом отверстии способно удерживать жидкость во флаконе. При открытой крышке оно преодолевается силой давления воздуха и духи начинают вытекать. Декарт выдвинул гипотезу, что с высотой воздух становится реже, а значит, должно уменьшаться и его давление.

Уже после опытов Торричелли Декарт поручил талантливому французскому математику и физику Блезу Паскалю проверить его догадку – верно ли, что давление с высотой убывает. Для этого он должен был подняться в горы с трубкой Торричелли. Опустившийся вниз столбик ртути на высоте горы Пюи де Дом подтвердили гипотезы Торричелли и Декарта.

Паскаль сделал вывод:

«законы давления жидкостей, известные ещё со времён славного Архимеда и развитые голландцем Симеоном Стевином, во многом справедливы и для воздуха». 

Давление воздуха не замечается человеком, потому что по законам давления в жидкостях и газах оно направлено и в стороны, и вниз.

Как измеряют атмосферное давление?

Барометр Торричелли используют до сих пор. Этот простой прибор помогает определить примерную высоту над уровнем моря. Альпинисты берут его с собой высоко в горы. Барометр – обязательный прибор кабины каждого летательного аппарата, будь то самолёт или спутник Земли. В наши дни его «братья» спускаются и на дно морей. Из высотомеров они превратились в глубиномеры.

За три с лишним века барометры изменились: стали автоматическими, самозаписывающими, научились управлять другими механизмами.

Ртутный барометр измеряет атмосферное давление с наибольшей точностью

Старые ртутные барометры.
Автор: GianniG46

На метеорологических станциях давление атмосферного воздуха измеряют всё те же ртутные барометры, так как они обладают наибольшей точностью. Они работают по тому же принципу, что и изобретение Торричелли.

При измерении величины давления вводят поправки на температуру, так как при повышении температур, ртуть и шкала барометра расширяются. На практике пользуются готовой таблицей поправок, которая сразу же даёт нужную величину.

Мембранные барометры

Для измерения атмосферного давления применяют также мембранные манометры. Простейший мембранный манометр показан схематически на рис 1.

Рис. 1. Мембранный барометр

Тонкая упругая пластинка-мембрана 1 герметически закрывает коробку 2, из которой откачана часть воздуха. С мембраной соединён указатель 3, поворачивающийся около О на угол, зависящий от степени прогиба мембраны, которая в свою очередь зависит от разности измеряемой силы давления воздуха вне коробки и внутри коробки.

Такие манометры называют барометрами-анероидами. Их градуируют и выверяют по ртутному барометру. Они менее точны, зато более удобны в обращении, поскольку не содержат ртути. При определении давления анероидом вносятся три поправки (на шкалу, на температуру и дополнительная на прибор), указанные в сертификате прибора. Анероид может давать надежные показания только в том случае, если он время от времени подвергается тщательной проверке.

Барометр-анероид.
Изображение Wolfgang Eckert с сайта Pixabay

Анероид может быть градуирован непосредственно на высоту атмосферы. Такие анероиды называют альтиметрами; или высотомерами, они используются в авиалайнерах и позволяют пилоту контролировать высоту полёта.

Высотомер Булова Б-11, с самолёта-истребителя.
Автор: Дозиметр

Для непрерывной регистрации изменения атмосферного давления применяется самопишущий прибор — барограф . Приёмной частью барографа является несколько соединённых между собой малых анероидных коробок.

Другие приборы

Гипсотермометр (гипсометртермобарометрбаротермометр) — прибор для измерения атмосферного давления по температуре кипящей жидкости (обычно воды). Он более точен, чем анероид.

Состоит из кипятильника и термометра со шкалой, разделённой на 0°,01. Этот прибор обычно применяется в экспедиционных условиях для барометрического нивелирования.

Штормгласс – это химический или кристаллический барометр, состоящий из стеклянной колбы или ампулы, заполненных спиртовым раствором, в котором в определённых пропорциях растворены камфора, нашатырь и калийная селитра.


Этим химическим барометром активно пользовался во время своих морских путешествий английский гидрограф и метеоролог, вице-адмирал Роберт Фицрой, который тщательно описал поведение барометра, это описание используется до сих пор. Поэтому штормгласс также называют «Барометром Фицроя». В 1831–1836 гг. Фицрой возглавлял океанографическую экспедицию на корабле «Бигль», в которой участвовал Чарльз Дарвин.

Весной и осенью резкое падение показателей барометра предвещает ветреную погоду. Летом, в сильную жару, оно предупреждает о грозе. Зимой, особенно после продолжительных морозов, быстрое падение ртутного столба говорит о предстоящей перемене направления ветра, сопровождающейся оттепелью и дождём. Напротив, повышение ртутного столба во время продолжительных морозов предвещает снегопад.

Закономерности в изменении атмосферного давления и способ использования этих знаний

Почти вся масса атмосферы Земли сосредоточена в слое высотой примерно до 50 км. По достижении высоты 50 км ускорение свободного падения уменьшается всего лишь на 1,5% по сравнению с ускорением на уровне моря; поэтому можно принять, что в пределах всего 50-километрового слоя атмосферы ускорение свободного падения остается равным g = 9,8 м/с2.

Представляя атмосферный воздух в виде сплошной среды, мы, конечно, не должны забывать, что в действительности это газ. Давление — статистическая величина, выражаемая через усреднённый по многим молекулам квадрат скорости их хаотического движения. Сила давления на любую реальную или мысленно выделенную площадку в газе обусловлена хаотической бомбардировкой этой площадки множеством молекул.

Давление понижается с высотой и повышается при спуске в глубокие шахты. Причина – в разрежении  воздуха (уменьшении плотности) с подъёмом и уплотнении со спуском, ведь он притягивается землёй и около неё сосредоточена основная его масса. В нижней тропосфере давление с высотой уменьшается примерно на 1 мм на каждые 10,5 м. Это позволяет с помощью барометра-высотомера определять высоту места.

Как изменяется атмосферное давление с высотой?

На самом деле эта закономерность соблюдается только до высоты  в 1 км. Расстояние в метрах, на которое надо подняться или опуститься, чтобы атмосферное давление изменилось на 1 мб, называется барической ступенью. Барическая ступень на высоте от 0 до 1 км составляет 10,5 м, от 1 до 2 км – 11,9 м, на высоте 2-3 км барическая ступень равна 13,5 км. Величина барической ступени зависит от температуры. В тёплом воздухе она больше. Более точно барометрическая формула описана тут: https://ru.wikipedia.org/wiki/

На практике же часто пользуются особыми таблицами, которые позволяют более или менее приблизительно получать данные о высотах. Но для решения задач, не требующих высокой точности, можно пользоваться и средним значением. Можно оценить давление по разности высот, высчитать высоту по разности давления.

Задача 1

Альпинисты поднимаются на гору, высота которой 5100 м. У подножия горы давление составляет 720 мм рт. ст. Какое давление будет на вершине?

Решение:

При подъёме на 10,5 м давление снижается на 1 мм рт. ст.

1) Узнаем, на сколько мм. рт. ст. снизится давление при подъёме на эту гору. 5100:10,5=486 (на 486 мм рт. ст.)

2) Узнаем, каким будет давление на вершине. 720-486=234 (мм рт. ст.)

Ответ: На вершине будет давление в 234 мм рт. ст.

Задача 2

Определите, на какой высоте летит самолёт, если за бортом давление 450 мм рт. ст., а у поверхности Земли 750 мм рт. ст.

1) Определяем разность в давлении. 750-450=300 мм рт. ст. – столько раз по 10,5 метров поднялся самолёт.

2) Узнаем, на сколько метров поднялся самолёт. 10,5  Х  300 = 3150 (м)

Ответ: самолёт на высоте 3150 м.

Задача 3

У подножия холма барометр показывает давление – 761 мм рт. ст., а на вершине – 761 мм рт. ст. Чему равна высота холма?

Задача решается по тому же принципу, что и предыдущая.

1) 761-750=11 (мм рт. ст.)

2) 11 Х 10,5 = 115,5 (м)

Ответ: высота холма равна 115,5 м.

Атмосферное давление постоянно изменяется

Плотность воздуха зависит от температуры, температура же и является главной причиной изменения давления воздуха. Давление тёплого воздуха меньше, чем холодного. Это объясняется тем, что при нагревании воздух, как и все предметы, расширяется, его объём увеличивается и он перетекает в верхние слои на место менее нагретого воздуха, что приводит к уменьшению давления около земной поверхности.

На климатических и синоптических картах точки с одинаковыми показателями давления, приведённые к уровню моря, соединяют изолиниями, называемыми изобарами. Изобары бывают замкнутыми и незамкнутыми. Система замкнутых изобар с пониженным давлением в центре (Н) называется барическим минимумом, или циклоном. Система замкнутых изобар с повышенным давлением в центре (В) называется барическим максимумом, или антициклоном. Незамкнутые системы изобар – барический гребень, ложбина и седловина.

Все барические области делят на две группы: постоянные и сезонные (сохраняют характерные особенности давлений в течение определенного периода года).

Пояса давления на Земле

Давление на Земле распределяется зонально. В обобщённом виде эту зональность представляют в виде поясов:

  • на экваторе расположен пояс низкого давления – экваториальная депрессия;
  • к югу и северу от экватора до 30-40° широты – пояс повышенного давления;
  • на 60-70° с. и ю. ш. – пояса пониженного давления;
  • приполярные районы – пониженное давление.
Пояса атмосферного давления на Земле

На самом деле реальная картина распределения давления на поверхности земли гораздо сложнее.

Постоянные барические области

Постоянным остаётся экваториальный пояс пониженного давления, только смещая ось вслед за Солнцем. В июле она перемещается в Северное полушарие на 15-20° с. ш., в декабре – в Южное, на 5° ю. ш. Зимой над океаном и над сушей возникает сплошной пояс повышенного давления. Летом повышенное давление сохраняется над океанами, а над сушей образуется термическая депрессия и понижение давления. Постоянны и барические максимумы Антарктиды и Гренландии.

Над незамерзающими океанами и тёплыми течениями умеренной зоны и зимой и летом ярко выражены барические минимумы:

  • Исландский;
  • Алеутский.
Сезонные барические области

30-40° широты

Только зимой тут действительно наблюдается пояс высокого давления. Летом над материком оно становится низким, а над океанами, прогревающимися медленно, давление остаётся высоким и даже повышается. Другими словами барические максимумы в течение всего года здесь сохраняются только над океанами:

  • Северо-Атлантический;
  • Северо-Тихоокеанский;
  • Южно-Атлантический;
  • Южно-тихоокеанский;
  • Южно-Индийский.

Умеренные и субполярные

В умеренных и субполярных широтах северного полушария, где чередуются океаны и материки, давление над сушей и водой различное, особенно зимой. Над сушей летом – минимум, а зимой – максимум. Летом же во всём поясе давление пониженное. Зимой над охлаждёнными материками давление высокое, здесь возникают сезонные барические максимумы:

  • Азиатский, с центром над Монголией;
  • Северо-Американский (Канадский).

Суточное колебание давления атмосферы

Наблюдается и суточное колебание давления. Ночью наблюдается один максимум, а днём – один минимум. Дважды за сутки, утром и вечером, оно повышается и столько же раз понижается, после полуночи и после полудня.

Изменение давления в течение суток связано с температурой воздуха и зависит от её изменений. Годовые изменения зависят от нагревания материков и океанов в летний период и их охлаждения в зимнее время. Летом область пониженного давления создается на суше, а область повышенного давления над океаном.

Минимальная величина атмосферного давления – 641,3 мм рт.ст или 854 мб  – была зарегистрирована над Тихим океаном в урагане «Ненси», а максимальная – 815,85 мм рт.ст. или 1087 мб – в Туруханске зимой. Максимальное давление в России зарегистрировано в Красноярском крае в 1968 г – 870 мм рт. ст.

Все барические системы оказывают большое влияние на воздушные течения, погоду и климат на значительных территориях. О вызываемых ими ветрах мы поговорим в следующий раз.

Тест для закрепления изученного материала

Источники:

  1. Томилин А. Н., Теребинская Н. В. Для чего ничего? Очерки. /Л., «Дет. лит.», 1975.
  2. Я. И. Перельман. Занимательные задачи и опыты. — М.: «Детская литература», 1972.
  3. Физическая география: Справ. пособие для подгот. отд. вузов/Г. В. Володина, И. В. Душина, С. Г. Любушкина и др.; Под ред. К. В. Пашканга — М.: Высш. шк., 1991.
  4. Тарасов Л. В. Атмосфера нашей планеты. — М.: ФИЗМАТЛИТ, 2012.
  5. Савцов Т. М. Общее землеведение: Учеб. пособие для студ. высш. пед. учеб. заведений — М.: Издательский центр «Академия», 2003
  6. Дронов В. П. Землеведение. 5-6 кл.: Учебник/В. П. Дронов, Л. Е. Савельева. 5-е изд., стереотип. — М.: Дрофа, 2015.
  7. География 5-6 классы: учеб. для общеобразоват. учреждений / А. И. Алексеев, Е. К. Липкина, В. В. Николина и др.; Под ред А. И. Алексеева. — М.: Просвещение, 2012.

Вам будет интересно

Как изменяется атмосферное давление с высотой?

С высотой атмосферное давление падает. Это связано с двумя причинами. Во-первых, чем выше мы находимся, тем меньше высота столба воздуха над нами, и, следовательно, меньший вес на нас давит. Во-вторых, с высотой плотность воздуха уменьшается, он становится более разреженным, то есть в нем меньше молекул газов, а следовательно он имеет меньшую массу и вес.

Почему плотность воздуха уменьшается с высотой? Земля притягивает тела, находящиеся в поле ее тяготения. Это же касается и молекул воздуха. Они бы все упали на поверхность Земли, но хаотичное быстрое их движение, отсутствие взаимодействия между собой, удаленность друг от друга заставляют их разлетаться и занимать все возможное пространство. Однако явление притяжения к Земле все же заставляет больше молекул воздуха находиться в нижних слоях атмосферы.

Однако уменьшение плотности воздуха с высотой имеет значение, если рассматривать всю атмосферу, составляющую около 10000 км высоты. На самом деле нижний слой атмосферы — тропосфера — содержит 80% массы воздуха и составляет всего 8-18 км высоты (высота меняется в зависимости от географической широты и сезона года). Здесь можно пренебречь изменением плотности воздуха с высотой, считая ее постоянной.

В таком случае на изменение атмосферного давления оказывает влияние только изменение высоты над уровнем моря. Тогда можно легко посчитать, как именно с высотой меняется атмосферное давление.

Плотность воздуха на уровне моря равна 1,29 кг/м3. Будем считать, что она остается почти неизменной на несколько километров вверх. Давление можно рассчитать по формуле p = ρgh. Здесь следует понимать, что h — это высота столба воздуха над тем местом, где измеряется давление. Самое большое значение h будет у поверхности Земли. С высотой оно будет уменьшаться.

Опыты показывают, что нормальное атмосферное давление на уровне моря составляет приблизительно 101,3 кПа или 101300 Па. Найдем примерную высоту столба воздуха над уровнем моря. Понятно, что это будет не реальная высота, так как воздух вверху разрежен, а как бы высота воздуха, «спрессованного» до такой же плотности как у поверхности Земли. Но близ поверхности Земли нас это не волнует.

h = p / (ρg) = 101300 Па / ( 1,29 кг/м3 * 9,8 Н/кг) ≈ 8013 м

А теперь рассчитаем атмосферное давление при подъеме на 1 км вверх (на 1000 м). Здесь высота столба воздуха составит 7013 м, тогда

p = (1,29 * 9,8 * 7013) Па ≈ 88658 Па ≈ 89 кПа

То есть близ поверхности Земли на каждый километр вверх давление примерно уменьшается на 12 кПа (101 кПа – 89 кПа).

Атмосферное давление - Atmospheric pressure

Статическое давление, создаваемое массой атмосферы

«Давление воздуха» перенаправляется сюда. Для давления воздуха в других системах см. Давление .

Атмосферное давление , также известное как барометрическое давление (после барометра ), - это давление в атмосфере Земли . Стандартная атмосфера (символ: атм) является единицей давления определяется как 101,325  Па (1,013.25  гПа ; 1,013.25  мбар ), что эквивалентно 760 мм ртутного столба , 29.9212 дюймов ртутного столба , или 14.696 фунтов на квадратный дюйм . Атм примерно эквивалентен среднему атмосферному давлению на уровне моря на Земле, то есть атмосферное давление Земли на уровне моря составляет примерно 1 атм.     

В большинстве случаев, атмосферное давление близко приближаются к гидростатическому давлению , вызванным весомы в воздухе над измерительной точкой. По мере увеличения высоты над уровнем моря уменьшается масса вышележащей атмосферы, поэтому атмосферное давление уменьшается с увеличением высоты. Давление мера сила на единицу площади, с единицами СИ в паскалях (1 паскаль = 1 ньютон на квадратный метр , 1  Н / м 2 ). В среднем столб воздуха с площадью поперечного сечения в 1 квадратный сантиметр (см 2 ), измеренный от среднего (среднего) уровня моря до верхней границы атмосферы Земли, имеет массу около 1,03 килограмма и оказывает силу или " вес »около 10,1 ньютона , что дает давление 10,1 Н / см 2 или 101 кН / м 2 (101 килопаскаль, кПа). Колонна воздуха с площадью поперечного сечения 1 в 2 будет иметь вес около 14,7 фунтов F , в результате чего давление 14,7 фунтов е / в 2 .     

Механизм

Атмосферное давление вызывается гравитационным притяжением планеты к атмосферным газам над поверхностью и является функцией массы планеты, радиуса поверхности, количества и состава газов и их вертикального распределения в пространстве. Атмосфера. Он изменяется из-за вращения планет и местных эффектов, таких как скорость ветра, изменения плотности из-за температуры и изменения состава.

Среднее давление на уровне моря

Карта, показывающая атмосферное давление в мбар или гПа Среднее за 15 лет давление на уровне моря для июня, июля и августа (вверху) и декабря, января и февраля (внизу). Повторный анализ ERA-15 . Барометрический авиационный альтиметр типа Коллсмана (используемый в Северной Америке), показывающий высоту 80 футов (24 м), откалиброванный для давления на уровне моря 29,87 дюйма ртутного столба.

Среднее давление на уровне моря (MSLP) является атмосферным давлением на среднем уровне моря (PMSL). Это атмосферное давление, которое обычно указывается в сводках погоды по радио, телевидению, в газетах или в Интернете . Когда барометры в доме настроены на соответствие местным сводкам погоды, они измеряют давление с учетом уровня моря, а не фактическое местное атмосферное давление.

Настройка высотомера в авиации - это регулировка атмосферного давления.

Среднее давление на уровне моря составляет 1013,25 мбар (101,325 кПа; 29,921 дюйм рт. Ст.; 760,00 мм рт. Ст.). В авиационных сводках погоды ( METAR ) QNH передается по всему миру в миллибарах или гектопаскалях (1 гектопаскаль = 1 миллибар), за исключением США , Канады и Колумбии, где он передается в дюймах ртутного столба (с точностью до двух знаков после запятой). ). Соединенные Штаты и Канада также сообщают SLP давления на уровне моря , которое скорректировано с учетом уровня моря другим методом, в разделе примечаний, а не в международной части кода, в гектопаскалях или миллибарах. Однако в государственных сводках погоды в Канаде давление на уровне моря вместо этого указывается в килопаскалях.

В примечаниях к метеорологическим кодам США передаются только три цифры; десятичные точки и одна или две старшие цифры опускаются: 1013,2 мбар (101,32 кПа) передается как 132; 1000,0 мбар (100,00 кПа) передается как 000; 998,7  мбар передается как 987; и т. д. Самое высокое давление на уровне моря на Земле наблюдается в Сибири , где Сибирский антициклон часто достигает давления на уровне моря выше 1050 мбар (105 кПа; 31 дюйм рт. ст.) с рекордными максимумами, близкими к 1085 мбар (108,5 кПа; 32,0 дюйма рт. ст.) . Самое низкое измеряемое давление на уровне моря наблюдается в центрах тропических циклонов и торнадо с рекордно низким значением 870 мбар (87 кПа; 26 дюймов рт. Ст.).

Поверхностное давление

Давление атмосферное давление в месте на земной поверхности «(ы местности и океанов ). Это прямо пропорционально массе воздуха над этим местом.

По численным причинам атмосферные модели, такие как модели общей циркуляции (МОЦ), обычно предсказывают безразмерный логарифм приземного давления .

Среднее значение приземного давления на Земле 985 гПа. Это контрастирует со средним давлением на уровне моря, которое включает экстраполяцию давления на уровень моря для мест выше или ниже уровня моря. Среднее давление на среднем уровне моря ( MSL ) в Международной стандартной атмосфере ( ISA ) составляет 1013,25 гПа, или 1 атмосферу (атм), или 29,92 дюйма ртутного столба.

Давление (p), масса (м) и ускорение свободного падения (g) связаны соотношением P = F / A = (m * g) / A, где A - площадь поверхности. Таким образом, атмосферное давление пропорционально весу на единицу площади атмосферной массы над этим местом.

Изменение высоты

Изменение атмосферного давления с высотой, рассчитанное для 15 ° C и относительной влажности 0%. Эта пластиковая бутылка была запечатана на высоте примерно 14000 футов (4300 м) и была раздавлена ​​увеличением атмосферного давления, зафиксированным на высоте 9000 футов (2700 м) и 1000 футов (300 м), когда она была опущена к уровню моря.

Давление на Земле зависит от высоты поверхности; поэтому давление воздуха в горах обычно ниже, чем давление на уровне моря. Давление плавно меняется от поверхности Земли до верха мезосферы . Хотя давление меняется в зависимости от погоды, НАСА усреднило условия для всех частей Земли круглый год. С увеличением высоты атмосферное давление падает. Можно рассчитать атмосферное давление на заданной высоте. Температура и влажность также влияют на атмосферное давление, и необходимо знать их, чтобы рассчитать точное значение. График справанад был разработан для температуры 15 ° C и относительной влажности 0%.

На малых высотах над уровнем моря давление снижается примерно на 1,2 кПа (12 гПа) на каждые 100 метров. Для больших высот в тропосфере следующее уравнение ( барометрическая формула ) связывает атмосферное давление p с высотой h : пзнак равноп0⋅(1-L⋅часТ0)грамм⋅Mр0⋅Lзнак равноп0⋅(1-грамм⋅часcп⋅Т0)cп⋅Mр0≈п0⋅exp⁡(-грамм⋅час⋅MТ0⋅р0){\ displaystyle {\ begin {align} p & = p_ {0} \ cdot \ left (1 - {\ frac {L \ cdot h} {T_ {0}}} \ right) ^ {\ frac {g \ cdot M } {R_ {0} \ cdot L}} \\ & = p_ {0} \ cdot \ left (1 - {\ frac {g \ cdot h} {c _ {\ text {p}} \ cdot T_ {0}) }} \ right) ^ {\ frac {c _ {\ text {p}} \ cdot M} {R_ {0}}} \ приблизительно p_ {0} \ cdot \ exp \ left (- {\ frac {g \ cdot h \ cdot M} {T_ {0} \ cdot R_ {0}}} \ right) \ end {align}}}

где постоянные параметры описаны ниже:

Параметр Описание Значение
p 0 Стандартное атмосферное давление на уровне моря 101325  Па
L Температурный градиент температуры, = г / с р для сухого воздуха ~ 0,00976  К / м
c p Удельная теплоемкость при постоянном давлении 1004,68506  Дж / (кг · К)
Т 0 Стандартная температура на уровне моря 288,16  К
грамм Ускорение силы тяжести на поверхности земли 9.80665  м / с 2
M Молярная масса сухого воздуха 0,02896968  кг / моль
R 0 Универсальная газовая постоянная 8,314462618  Дж / (моль · К)

Местная вариация

Атмосферное давление на Земле сильно различается, и эти изменения важны для изучения погоды и климата . См. Систему давления, чтобы узнать о влиянии колебаний давления воздуха на погоду.

Атмосферное давление показывает суточный или полусуточный (дважды в день) цикл, вызванный глобальными атмосферными приливами . Этот эффект наиболее силен в тропических зонах с амплитудой в несколько миллибар и почти нулевой в полярных областях. Эти вариации имеют два наложенных друг на друга цикла: циркадный (24 ч) цикл и полусиркадный (12 ч) цикл.

Записи

Самое высокое барометрическое давление, приведенное к уровню моря, когда-либо зарегистрированное на Земле (выше 750 метров), составило 1084,8 гПа (32,03 дюйма ртутного столба), измеренное в Тосонценгеле, Монголия, 19 декабря 2001 года. 750 метров) было в Агате в Эвенкийском автономном округе , Россия (66 ° 53 '  с.ш., 93 ° 28'  в.д., высота: 261 м, 856 футов) 31 декабря 1968 г. при 1083,8 гПа (32,005 дюйма рт. Ст.). Дискриминация происходит из-за проблемных предположений (предполагая стандартную частоту отклонений), связанных с понижением уровня моря с большой высоты.

Мертвое море , самое низкое место на Земле в 430 м (1410 футов) ниже уровня моря, имеет соответственно высокое типичное атмосферное давление 1065  гПа. Рекорд приземного давления ниже уровня моря в 1081,8 гПа (31,95 дюйма ртутного столба) был установлен 21 февраля 1961 года.

Наименьшее без tornadic атмосферного давления когда - либо измеренная 870 гПа (0,858 атм; 25,69 INhg), установленного на 12 октября 1979 года во время тайфуна Совет в западной части Тихого океана. Измерения основывались на инструментальных наблюдениях с самолета-разведчика.

Измерение на основе глубины воды

Одна атмосфера (101,325 кПа или 14,7 фунтов на квадратный дюйм) - это также давление, вызванное весом столба пресной воды примерно 10,3 м (33,8 фута). Таким образом, ныряльщик на глубине 10,3 м под водой испытывает давление около 2 атмосфер (1 атм воздуха плюс 1 атм воды). И наоборот, 10,3 м - это максимальная высота, на которую можно поднять воду с помощью всасывания при стандартных атмосферных условиях.

Низкое давление, такое как линии природного газа , иногда указывается в дюймах водяного столба , обычно записываемых как wc (водяной столб) или wg (дюймы водяного столба). Типичный газовый бытовой прибор в США рассчитан на максимальное давление 1/2 фунта на квадратный дюйм, что составляет примерно 14 вод. Ст. (3487 Па или 34,9 мбар). Подобные метрические единицы с большим разнообразием названий и обозначений на основе миллиметров , сантиметров или метров теперь используются реже.

Температура кипения воды

Чистая вода кипит при 100 ° C (212 ° F) при нормальном атмосферном давлении. Точка кипения - это температура, при которой давление пара равно атмосферному давлению вокруг воды. Из-за этого температура кипения воды ниже при более низком давлении и выше при более высоком давлении. Поэтому приготовление пищи на большой высоте требует корректировки рецептов или приготовления под давлением . Грубую оценку высоты можно получить, измерив температуру, при которой вода закипает; в середине 19 века этим методом воспользовались исследователи.

Измерение и карты

Важным применением знания о том, что атмосферное давление напрямую зависит от высоты, стало определение высоты холмов и гор благодаря наличию надежных устройств измерения давления. В 1774 году, Маскелин был подтвердив теорию тяготения Ньютона на и на Schiehallion горе в Шотландии, и ему нужно было точно измерить высоты по бокам горы. Уильям Рой , используя атмосферное давление, смог подтвердить определение роста Маскелайна с точностью до одного метра (3,28 фута). Этот метод стал и остается полезным для геодезических работ и составления карт.

Смотрите также

  • Атмосфера (единица)
  • Плотность атмосферы
  • Атмосфера Земли  - газовый слой, окружающий Землю: в основном азот, исключительно богатый кислородом, со следовыми количествами других молекул.
  • Барометрическая формула  - формула, используемая для моделирования того, как давление воздуха изменяется с высотой.
  • Баротравма  - травма, вызванная давлением - физическое повреждение тканей тела, вызванное разницей в давлении между воздушным пространством внутри или рядом с телом и окружающим газом или жидкостью.
  • Герметизация кабины
  • Кавитация  - образование заполненных паром пустот низкого давления в жидкости.
  • Воздействие большой высоты на человека  - научный феномен
  • Область высокого давления  - область, в которой атмосферное давление на поверхности планеты выше, чем в окружающей среде.
  • Международная стандартная атмосфера  - модель атмосферы, таблица типичных изменений основных термодинамических переменных атмосферы (давления, плотности, температуры и т. Д.) С высотой в средних широтах.
  • Зона низкого давления
  • Метеорология
  • NRLMSISE-00
  • Камера статического давления
  • Давление  - сила, непрерывно распределенная по площади.
  • Измерение давления
  • Субтропический хребет

Ссылки

внешние ссылки

Эксперименты

Атмосферное давление: что за загадочный термин?

14.05.2009 15:09

Сообщая по радио о погоде, дикторы в конце обычно сообщают: атмосферное давление 760 мм ртутного столба (или 749, или 754 и т.д.). Но многие ли понимают, что это значит, и откуда синоптики берут эти данные? О том, как измеряют атмосферное давление, как оно изменяется и влияет на человека, вы узнаете из этой статьи.

Немного истории

Первым атмосферное давление измерил итальянский ученый Эванджелиста Торричелли в 1643 году. Развивая учения Галилея, Торричелли после долгих опытов, доказал, что воздух имеет вес, и давление атмосферы уравновешивается столбом воды в 32 фута, или 10,3 м. Он пошел в своих исследованиях ещё дальше и позже изобрел прибор для измерения атмосферного давления — барометр.

Атмосферное давление, что это?

Атмосферное давление — давление атмосферного воздуха на находящиеся в нем предметы и на земную поверхность. В каждой точке атмосферы атмосферное давление равно весу вышележащего столба воздуха с основанием, равным единице площади. С высотой атмосферное давление убывает. В соответствии с международной системой единиц (система СИ) основной единицей для измерения атмосферного давления является гектопаскаль (гПа), однако, в обслуживании ряда организаций разрешается применять старые единицы: миллибар (мб) и миллиметр ртутного столба (мм рт. ст.). Нормальным атмосферным давлением (на уровне моря) принято значение 760 мм ртутного столба (мм рт. ст.) при температуре 0 °С. 

Зачем его измеряют?

Измеряют атмосферное давление для того, чтобы с большей вероятностью предсказать возможное изменение погоды. Существует прямая связь между изменениями давления и изменениями погоды. Рост или понижение атмосферного давления с некоторой вероятностью может служить признаком изменения погоды. 

Изменение атмосферного давления с высотой

Газы сильно сжимаемы и чем сильнее сжат газ, тем больше его плотность и тем большее давление он производит. Нижние слои воздуха сжаты всеми вышележащими слоями. Чем выше от поверхности Земли, тем воздух слабее сжат, тем меньше его плотность и, следовательно, тем меньшее давление он производит. Так, например, когда воздушный шар поднимается над Землей, то давление воздуха на шар становится меньше не только потому, что высота столба воздуха над ним уменьшается, но еще и потому, что плотность воздуха вверху меньше, чем внизу. Так как все метеостанции, измеряющие атмосферное давление, расположены на разных высотах и полученные на них показатели чаще всего приводят к уровню моря. Делают это потому, что атмосферное давление довольно существенно убывает с высотой. Так на высоте 5 000 м оно уже примерно в два раза ниже. Поэтому для получения представления о реальном пространственном распределении атмосферного давления и для сравнимости его величины в различных местностях и на разных высотах, для составления синоптических карт давление приводят к единому уровню – к уровню моря. 

В течение суток давление также меняется, но незначительно, т.е. имеет суточный ход. Ночью повышается, а днем в период максимальных температур понижается. Особенно правильный суточный ход оно имеет в тропических странах, где дневное колебание достигает 2,4 мм рт. ст., а ночное — 1,6 мм рт. ст. С увеличением широты амплитуда изменения АД уменьшается, но вместе с тем становятся более сильными непериодические изменения атмосферного давления.

Распределение атмосферного давления по земной поверхности обусловливает движение воздушных масс и атмосферных фронтов, определяет направление и скорость ветра.

Влияние атмосферного давления на самочувствие

На самочувствие человека, достаточно долго проживающего в определённой местности, обычное, т.е. характерное давление не должно вызывать особого ухудшения самочувствия.

Пребывание в условиях повышенного атмосферного давления почти ничем не отличается от обычных условий. Лишь при очень высоком давлении отмечается небольшое сокращение частоты пульса и снижение минимального кровяного давления. Более редким, но глубоким становится дыхание. Незначительно понижается слух и обоняние, голос становится приглушенным, появляется чувство слегка онемевшего кожного покрова, сухость слизистых и др. Однако все эти явления относительно легко переносятся.

Более неблагоприятные явления наблюдаются в период изменения атмосферного давления — повышения (компрессии) и особенно его снижения (декомпрессии) до нормального. Чем медленнее происходит изменение давления, тем лучше и без неблагоприятных последствий приспосабливается к нему организм человека.

При пониженном атмосферном давлении отмечается учащение и углубление дыхания, учащение сердечных сокращений (сила их более слабая), некоторое падение кровяного давления, наблюдаются также изменения в крови в виде увеличения количества красных кровяных телец. В основе неблагоприятного влияния пониженного атмосферного давления на организм лежит кислородное голодание. Оно обусловлено тем, что с понижением атмосферного давления понижается и парциальное давление кислорода, поэтому при нормальном функционировании органов дыхания и кровообращения в организм поступает меньшее количество кислорода.

Повлиять на погоду мы не в состоянии. Но вот помочь своему организму пережить этот тяжелый период совсем несложно. При прогнозе значительного ухудшения погодных условий, а следовательно и резких перепадов атмосферного давления, прежде всего следует не паниковать, успокоиться, максимально снизить физическую нагрузку, а для тех у кого адаптация протекает довольно сложно, необходимо посоветоваться с врачом о назначении соответствующих лекарственных средств.


© Фото — Shutterstock.com

ГЛАВА 2. АТМОСФЕРНОЕ ДАВЛЕНИЕ

Ответ. Тропосфера содержит всю массу атмосферы, за исключением части P (тропопауза) / P (поверхность), которая находится выше тропопаузы. Из Рисунок 2-2 мы читаем P (тропопауза) = 100 гПа, P (поверхность) = 1000 гПа. Таким образом, доля Ftrop от общей массы атмосферы в тропосфере составляет

. Тропосфера составляет 90% общей массы атмосферы на 30 ° с.ш. (85% в мире).

Доля Fstrat от общей массы атмосферы в стратосфере выражается долей над тропопаузой, P (тропопауза) / P (поверхность), минус доля над стратопаузой, P (стратопауза) / P (поверхность).Из Рисунок 2-2 мы читаем P (стратопауза) = 0,9 гПа, так что

Таким образом, стратосфера содержит почти всю массу атмосферы над тропосферой. Мезосфера содержит лишь около 0,1% общей массы атмосферы.

2,4 БАРОМЕТРИЧЕСКИЙ ЗАКОН

Мы рассмотрим факторы, управляющие вертикальным профилем атмосферной температуры в главах 4 и 7. Мы сосредоточимся здесь на объяснении вертикального профиля давления. Рассмотрим элементарный слой атмосферы (толщина dz, горизонтальная область A) на высоте z:

.

Рисунок 2-3 Вертикальные силы, действующие на элементарный слой атмосферы

Атмосфера оказывает восходящую силу давления P (z) A на нижнюю часть плиты и направленную вниз силу давления P (z + dz) A на верхнюю часть плиты; чистая сила, (P (z) -P (z + dz)) A, называется сила градиента давления.Поскольку P (z)> P (z + dz), сила градиента давления направлена ​​вверх. Чтобы плита находилась в равновесии, ее вес должен уравновешивать силу градиента давления:

(2.3)

Переставляем урожайность

(2,4)

Левая часть по определению равна dP / dz. Следовательно,

(2,5)

Теперь, исходя из закона идеального газа,

(2.6)

где Ma - молекулярная масса воздуха, T - температура. Подстановка (2,6) в (2,5) урожайность:

(2,7)

Сделаем упрощающее предположение, что T постоянна с высотой; как показано в Рисунок 2-2 , T изменяется только на 20% ниже 80 км. Затем мы интегрируем (2,7) чтобы получить

(2,8)

что эквивалентно

(2.9)

Уравнение (2,9) называется барометрический закон. Удобно определить шкала высоты H для атмосферы:

(2.10)

приводя к компактной форме Барометрического закона:

(2.11)

Для средней температуры атмосферы T = 250 K масштаб высоты H = 7,4 км. Барометрический закон объясняет наблюдаемую экспоненциальную зависимость P от z в Рисунок 2-2 ; из уравнения (2.11) , график зависимости z от ln P дает прямую линию с наклоном -H (проверьте, что наклон в Рисунок 2-2 действительно близко к -7,4 км). Небольшие колебания наклона Рисунок 2-2 вызваны колебаниями температуры с высотой, которые мы не учли в нашем выводе.

Аналогично можно сформулировать вертикальную зависимость плотности воздуха. Из (2,6) , ra и P связаны линейно, если T предполагается постоянным, так что

(2.12)

Аналогичное уравнение применяется к плотности воздуха na. Для каждого подъема высоты H давление и плотность воздуха падают в е = 2,7 раза; таким образом, H обеспечивает удобную меру толщины атмосферы.

При расчете высоты шкалы от (2.10) мы предположили, что воздух ведет себя как однородный газ с молекулярной массой Ma = 29 г / моль. Закон Дальтона гласит, что каждый компонент воздушной смеси должен вести себя так, как если бы он был один в атмосфере.Тогда можно было бы ожидать, что разные компоненты будут иметь разные шкала высоты определяется их молекулярной массой. В частности, учитывая разницу в молекулярной массе между N2 и O2, можно было ожидать, что соотношение смешивания O2 будет уменьшаться с высотой. Однако, гравитационное разделение воздушной смеси происходит за счет молекулярная диффузия, которая значительно медленнее, чем турбулентное вертикальное перемешивание воздуха на высотах ниже 100 км ( проблема 4. 9 ). Таким образом, турбулентное перемешивание поддерживает однородную нижнюю атмосферу.Только на высоте более 100 км начинает происходить значительное гравитационное разделение газов, причем более легкие газы обогащаются на больших высотах. Во время дебатов о вредном воздействии хлорфторуглеродов (ХФУ) на стратосферный озон некоторые не очень уважаемые ученые утверждали, что ХФУ не могут достичь стратосферы из-за их высокого молекулярного веса и, следовательно, низкого масштаба. В действительности турбулентное перемешивание воздуха гарантирует, что соотношения смешивания CFC в воздухе, поступающем в стратосферу, по существу такие же, как и в приземном воздухе.

.

Стандартная атмосфера США

«Стандартная атмосфера» может рассматриваться как среднее давление, температура и плотность воздуха для различных высот.

« U.S. Standard Atmosphere 1976» представляет собой атмосферную модель того, как давление, температура, плотность и вязкость земной атмосферы меняются с высотой. Он определяется как имеющий температуру 288,15 K (15 o C, 59 o F) на уровне моря 0 км геопотенциальной высоты и 101325 Па ( 1013.25 гПа, 1013,25 мбар, 760 мм рт. Ст., 29,92 дюйма рт. Ст.) .

Атмосфера разделена на

  • Тропосфера - диапазон от 0 до 11 км (36000 футов) высота
  • стратосфера - диапазон от 11 до 51 км (167000 футов) высота
  • Мезосфера - диапазон 51–71 км (232000 футов) высота
  • Ионосфера - диапазон более 71 км (более 232000 футов) высота

U.S. Стандартные свойства атмосферного воздуха - британские единицы (BG)

Стандартные свойства атмосферного воздуха США - единицы СИ

Геопотенциал Высота над уровнем моря
- ч -
(м)
Температура
- т -
( o C)
Ускорение свободного падения
- g -
(м / с 2 )
Абсолютное давление
- p -
(
10 4 Н / м 2 )
Плотность
- ρ -
(
кг / м 3 )
Динамическая вязкость
- μ -
(
10 -5 Н с / м 2 )
-1000 21.50 9,810 11,39 1,347 1,821
0 15,00 9,807 10,13 1,225 1,789
1.758
2000 2.00 9.801 7.950 1.007 1.726
3000 -4.49 9,797 7,012 0,9093 1,694
4000 -10,98 9,794 6,166 0,8194 6,166 0,8194 1,61191 1,66 0,7364 1,628
6000 -23,96 9,788 4,722 0,6601 1,595
7000 -30.45 9,785 4,111 0,5900 1,561
8000 -36,94 9,782 3,565 0,5258 1,527 4 0,4671 1,493
10000 -49,90 9,776 2,650 0,4135 1,458
15000 -56.50 9,761 1,211 0,1948 1,422
20000 -56,50 9,745 0,5529 0,08891 1,422 0,08891 1,422 0,08891 1,422 1,422 1,422 0,04008 1,448
30000 -46,64 9,715 0,1197 0,01841 1,475
40000 -22.80 9,684 0,0287 0,003996 1,601
50000 -2,5 9,654 0,007978 0,001027 0,0003097 1,584
70000 -53,57 9,594 0,00052 0,00008283 1.438
80000 -74,51 9,564 0,00011 0,00001846 1,321

Атмосфера США - температура в зависимости от высоты

.

атмосферное давление | Определение и вариации

Атмосферное давление , также называемое барометрическим давлением , сила на единицу площади, действующая на столб атмосферы (то есть на всю массу воздуха над указанной областью). Атмосферное давление можно измерить с помощью ртутного барометра (отсюда обычно используется синоним барометрическое давление ), который указывает высоту столбика ртути, который точно уравновешивает вес столба атмосферы над барометром.Атмосферное давление также измеряется с помощью барометра-анероида, в котором чувствительный элемент представляет собой один или несколько полых, частично вакуумированных, гофрированных металлических дисков, поддерживаемых от сжатия внутренней или внешней пружиной; изменение формы диска при изменении давления может быть записано с помощью ручки пера и вращающегося барабана с часовым приводом.

изменения атмосферного давления с высотой

У поверхности Земли атмосферное давление уменьшается почти линейно с увеличением высоты.Однако изучение данных на больших высотах показывает, что зависимость экспоненциальная.

Encyclopædia Britannica, Inc.

Подробнее по этой теме

климат: атмосферное давление и ветер

Атмосферное давление и ветер являются важными факторами, влияющими на погоду и климат Земли. Хотя эти двое ...

Узнайте об атмосферном давлении, его единицах и методах измерения

Описание давления и его измерения.

© Josef Martha—sciencemanconsulting.com Посмотреть все видеоролики к этой статье

Атмосферное давление выражается в нескольких различных системах единиц: миллиметры (или дюймы) ртутного столба, фунты на квадратный дюйм (psi), дин на квадратный сантиметр, миллибар (мб), стандартные атмосферы или килопаскали. Стандартное давление на уровне моря по определению равно 760 мм (29,92 дюйма) ртутного столба, 14,70 фунта на квадратный дюйм, 1013,25 × 10 3 дин на квадратный сантиметр, 1013,25 миллибара, одной стандартной атмосфере или 101.325 килопаскалей. Вариации этих значений довольно малы; например, самые высокие и самые низкие когда-либо зарегистрированные давления на уровне моря составляют 32,01 дюйма (в центре Сибири) и 25,90 дюйма (во время тайфуна в южной части Тихого океана). Существующие небольшие колебания давления в значительной степени определяют характер ветра и шторма на Земле.

Узнайте, почему присоскам требуется внешнее атмосферное давление для давления на внутреннюю часть низкого давления.

Узнайте, почему отсутствие атмосферного давления в космическом вакууме делает присоски непригодными для использования.

Encyclopædia Britannica, Inc. Посмотреть все видео к этой статье

У поверхности Земли давление уменьшается с высотой со скоростью около 3,5 мбар на каждые 30 метров (100 футов). Однако над холодным воздухом падение давления может быть намного сильнее, потому что его плотность больше, чем у более теплого воздуха. Давление на высоте 270 000 метров (10 −6 мбар) сравнимо с давлением в лучшем из когда-либо созданных человеком вакууме. На высотах от 1500 до 3000 метров (от 5000 до 10000 футов) давление достаточно низкое, чтобы вызвать горную болезнь и серьезные физиологические проблемы, если не будет проведена тщательная акклиматизация.

.

Атмосферное давление по высоте Калькулятор

[1] 2020/07/15 12:31 Мужчина / 50 лет / Самозанятые лица / Очень /

Цель использования
Поиск входных данных для уравнений атмосферной рефракции - близко атмосферная рефракция на горизонте - это преимущественно функция градиента в окрестности наблюдателя.
Комментарий / запрос
Просто и полезно, полезно, что уравнение и его название даны!

[2] 2020/05/04 22:11 Мужчина / Уровень 50 лет / Другое / Полезно /

Цель использования
Наблюдение за «Голой наукой - ядро ​​Земли».Расчет базовых давлений даже на краю корки. Например. Самая глубокая скважина составляет 7,5 миль, глубина 12000 метров. Попробуйте -12000м .... откройте для себя науку о нашей земле!

[3] 2020/03/26 12:52 Мужской / Уровень 40 лет / Самостоятельно занятые люди / Полезно /

Цель использования
Обучение термодинамике ...
Комментарий / Запрос
Для большинства случаи, я уверен, что это идеально. было бы здорово, если бы я мог сделать следующее:
1. Разрешите мне выбрать единицы.(да, я могу преобразовать себя ... просто ленив :))
2. Покажите мне формулу с переменными, прежде чем добавлять к ним значения. Что было бы еще лучше, так это одностраничное пошаговое руководство по решению проблемы на бумаге (для тех из нас, кто не имеет формального образования)

[4] 2020/01/01 17:03 Мужской / Уровень 30 / Офисный работник / Государственный служащий / Полезно /

Цель использования
Расчетный насос NPSH

[5] 2019/11/24 22:46 Мужчина / До 20 лет / Средняя школа / ВУЗ / Аспирант / Очень /

Цель использования
Попытка отправить на большой высоте метеозонд.

[6] 2019/09/25 03:30 Мужчина / Уровень 40 лет / Другое / Очень /

Цель использования
Строительный инспектор и я использую его несколько раз в день.

[7] 2019/09/13 17:49 Мужчина / 60 лет и старше / Пенсионер / Полезно /

Цель использования
Давление воздуха в глубоких марсианских пещерах

[8] 2019/09/08 04:41 Мужской / Уровень 30 лет / Средняя школа / Университет / Аспирант / Очень /

Цель использования
Расчет атмосферного давления Каспийского моря (-92 фута) для понимания таблиц погружений

[9] 2018/08/24 11:13 Мужской / До 20 лет / Старшая школа / Университет / Аспирант / Очень /

Цель использования
Создание системы высотомера
Комментарий / Запрос
Хорошо объяснение!

[10] 2018/08/18 05:34 Мужчина / 30 лет / Инженер / Очень /

Цель использования
Получите давление воздуха на уровне 2600 м над уровнем моря, чтобы подготовить вакуумный тест на судне.
.

Атмосферное давление - Простая английская Википедия, бесплатная энциклопедия

Эта пластиковая бутылка была запечатана на высоте примерно 14 000 футов и была раздавлена ​​увеличением атмосферного давления (на 9 000 футов и 1 000 футов), когда она была опущена до уровня моря.

Атмосферное давление - это сила в области, которая прижимается к поверхности под весом атмосферы Земли, слоя воздуха. Воздух распределен по земному шару неравномерно. Он движется, и в разное время слой воздуха в одних местах толще, чем в других.Там, где слой воздуха толще, воздуха больше. Поскольку воздуха больше, давление в этом месте выше. Чем тоньше слой воздуха, тем ниже атмосферное давление.

На большей высоте плотность и давление атмосферы ниже. Это потому, что над возвышенностями не так много воздуха, который давит вниз.

Барометры могут использоваться для измерения атмосферного давления. [1] Атмосферное давление одинаково со всех сторон.Единица измерения давления в системе СИ - гПа. Другие единицы измерения, такие как Бар (единица измерения) и торр, используются для различных целей.

.

Атмосферное давление

полный текст классического руководства FAA

АТМОСФЕРНОЕ ДАВЛЕНИЕ

Атмосферное давление - это сила, действующая под действием веса атмосферы. Поскольку воздух не является твердым телом, мы не можем взвесить его на обычных весах. Тем не менее, Торичелли доказал три столетия назад, что может взвесить атмосферу, уравновесив ее по столбу ртути. Он фактически измерил давление, переведя его непосредственно в вес.

ИЗМЕРИТЕЛЬНОЕ ДАВЛЕНИЕ

Прибор Toricelli, предназначенный для измерения давления, - это барометр.Метеорологические службы и авиационное сообщество используют два типа барометров для измерения давления - ртутные и анероидные.

Меркуриальный барометр

Ртутный барометр, схематически изображенный на рисунке 8, состоит из открытой чашки с ртутью, в которую мы помещаем открытый конец вакуумированной стеклянной трубки. Атмосферное давление заставляет ртуть подниматься в трубке. На станциях, расположенных на уровне моря, столб ртути в среднем поднимается на высоту 29,92 дюйма или 760 миллиметров. Другими словами, столб ртути такой высоты весит столько же, сколько столб воздуха, имеющий такое же поперечное сечение, что и столб ртути, и простирается от уровня моря до верхних слоев атмосферы.

Почему мы используем ртуть в барометре? Ртуть - самое тяжелое из доступных веществ, которое остается жидким при обычных температурах. Это позволяет прибору иметь управляемый размер. Мы могли бы использовать воду, но на уровне моря толщина водяного столба будет около 34 футов.

РИСУНОК 8. Ртутный барометр. Атмосферное давление выталкивает ртуть из открытой чашки вверх в вакуумированную стеклянную трубку. Высота ртутного столба является мерой атмосферного давления.
Барометр-анероид

Важнейшими характеристиками барометра-анероида, показанного на рисунке 9, являются гибкая металлическая ячейка и регистрирующий механизм. Ячейка частично откачивается и сжимается или расширяется при изменении давления. Один конец ячейки фиксируется, а другой конец перемещает регистрирующий механизм. Соединительный механизм увеличивает движение ячейки, приводящей стрелку индикатора вдоль шкалы, градуированной в единицах давления.

РИСУНОК 9. Барометр-анероид.Анероид состоит из частично откачанной металлической ячейки, соединительного механизма и индикаторной шкалы. Клетка сжимается и расширяется при изменении давления. Механизм сцепления приводит в движение индикатор по шкале, размеченной в единицах давления.
Единицы давления

Давление выражается по-разному во всем мире. Используемый термин в некоторой степени зависит от его применения и системы измерения. Двумя популярными единицами измерения являются «дюймы ртутного столба» или «миллиметры ртутного столба». Поскольку давление - это сила на единицу площади, более явное выражение давления - «фунты на квадратный дюйм» или «граммы на квадратный сантиметр».Термин «миллибар» точно выражает давление как силу на единицу площади, где один миллибар соответствует силе в 1000 дин на квадратный сантиметр. Миллибар быстро становится универсальной единицей измерения давления.

Станция Давления

Очевидно, что мы можем измерить давление только в точке измерения. Давление, измеренное на станции или в аэропорту, называется «давлением станции» или фактическим давлением на высоте поля. Мы знаем, что давление на большой высоте меньше, чем на уровне моря или малой высоте.Например, давление на станциях в Денвере меньше, чем в Новом Орлеане. Рассмотрим подробнее некоторые факторы, влияющие на давление.

ИЗМЕНЕНИЕ ДАВЛЕНИЯ

Давление зависит от высоты и температуры воздуха, а также от других незначительных факторов, которыми мы здесь пренебрегаем.

Высота

По мере того, как мы движемся вверх через атмосферу, вес воздуха наверху становится все меньше и меньше. Если мы возьмем с собой барометр, мы сможем измерить снижение давления по мере уменьшения веса воздуха над ним.В пределах нескольких тысяч футов нижней части тропосферы давление уменьшается примерно на один дюйм на каждые 1000 футов увеличения высоты. Чем выше мы поднимаемся, тем медленнее уменьшается с ростом. На рисунке 10 показано падение давления с высотой в стандартной атмосфере. Эти стандартные высоты основаны на стандартных температурах. В реальной атмосфере температуры редко бывают стандартными, поэтому давайте рассмотрим температурные эффекты.

РИСУНОК 10. Стандартная атмосфера. Обратите внимание, как давление уменьшается с увеличением высоты; скорость уменьшения с высотой наибольшая на нижних уровнях.
Температура

Как и большинство других веществ, воздух расширяется при нагревании и сжимается при охлаждении. На рис. 11 показаны три столба воздуха: один холоднее стандарта, один при стандартной температуре и один теплее стандарта. Давление одинаково внизу каждой колонки и одинаково вверху каждой колонки. Следовательно, снижение давления вверх по каждой колонке одинаковое. Вертикальное расширение теплой колонны сделало ее выше, чем при стандартной температуре. Усадка холодного столба сделала его короче.Поскольку снижение давления одинаково в каждой колонке, скорость снижения давления с высотой в теплом воздухе меньше стандартной; скорость снижения давления с высотой в холодном воздухе больше стандартной. Вскоре вы увидите важность температуры в альтиметрии и анализе погоды, а также в характеристиках самолета.

РИСУНОК 11. Три столба воздуха, показывающие, как уменьшение давления с высотой изменяется с температурой. Левый столбец холоднее среднего, а правый столбец теплее среднего.Давление одинаково внизу каждой колонки и одинаково вверху каждой колонки. В холодном воздухе давление падает быстрее всего с высотой, а в теплом - меньше всего.
Давление на уровне моря

Поскольку давление меняется с высотой, мы не можем легко сравнивать давление между станциями на разных высотах. Чтобы сделать их сопоставимыми, мы должны привести их к некоторому общему уровню. Средний уровень моря кажется наиболее приемлемым общим ориентиром. На рисунке 12 давление, измеренное на станции высотой 5000 футов, составляет 25 дюймов; давление увеличивается примерно на 1 дюйм на каждые 1000 футов или всего на 5 дюймов.Давление на уровне моря составляет примерно 25 + 5 или 30 дюймов. Наблюдатель за погодой принимает во внимание температуру и другие эффекты, но этот упрощенный пример объясняет основной принцип снижения давления на уровне моря.

Обычно мы выражаем давление на уровне моря в миллибарах. Стандартное давление на уровне моря составляет 1013,2 миллибара, 29,92 дюйма ртутного столба, 760 миллиметров ртутного столба или около 14,7 фунта на квадратный дюйм. На рисунках 23 и 24 в главе 4 показаны среднемировые значения давления на уровне моря за июль и январь.Однако давление постоянно меняется и сильно отклоняется от этих средних значений. Мы используем последовательность погодных карт, чтобы отслеживать эти изменения давления.

РИСУНОК 12. Снижение давления станции до уровня моря. Давление увеличивается примерно на 1 дюйм на 1000 футов от отметки станции до уровня моря.
Анализ давления

Мы наносим на карту давление на уровне моря и проводим линии, соединяющие точки равного давления. Эти линии равного давления составляют изобары. Следовательно, карта поверхности представляет собой изобарический анализ , показывающий идентифицируемые организованные структуры давления. На рисунке 13 показаны пять систем давления, которые определены следующим образом:

  1. LOW - центр давления, окруженный со всех сторон более высоким давлением; также называется циклон. Циклоническая кривизна - это кривизна изобар влево, когда вы стоите с меньшим давлением слева от вас.

  2. ВЫСОКИЙ - центр давления, окруженный со всех сторон более низким давлением, также называемый антициклоном.Антициклоническая кривизна - это кривизна изобар вправо, когда вы стоите с меньшим давлением слева от вас.

  3. ПРОБКА - удлиненная область низкого давления с наименьшим давлением вдоль линии, обозначающей максимальную циклоническую кривизну.

  4. Хребет - удлиненная область высокого давления с максимальным давлением вдоль линии максимальной антициклонической кривизны.

  5. COL - нейтральная область между двумя максимумами и двумя минимумами. Это также пересечение желоба и гребня.Цв на поверхность давления аналогичны перевал на топографическую поверхность.

Карты погоды на высотах показывают те же самые типы моделей давления на высоте для нескольких уровней. Они также показывают температуру, влажность и ветер на каждом уровне. Фактически, доступна диаграмма уровня в пределах нескольких тысяч футов от запланированной крейсерской высоты. В АВИАЦИОННОМ ПОГОДЕ СЛУЖБЫ перечислены приблизительные высоты на картах верхнего слоя атмосферы и показаны детали карты поверхности и каждой карты верхнего слоя атмосферы.Глава 4 этой книги связывает воедино карту поверхности и карту высот в трехмерное изображение.

РИСУНОК 13. Системы давления.

Карта верхних слоев атмосферы - это анализ постоянного давления . Но что мы подразумеваем под «постоянным давлением»? Постоянное давление просто относится к определенному давлению. Произвольно выберем 700 мбар. Повсюду над поверхностью земли давление уменьшается с высотой; и на некоторой высоте оно уменьшается до этого постоянного давления в 700 миллибар.Следовательно, в атмосфере есть «поверхность», на которой давление составляет 700 мбар. Мы называем это поверхностью постоянного давления 700 миллибар. Однако высота этой поверхности не постоянна. Повышающееся давление толкает поверхность вверх к взлетам и гребням. Падение давления понижает высоту поверхности до впадин и впадин. Эти системы непрерывно мигрируют в виде «волн» по поверхности давления. Помните, что мы произвольно выбрали эту поверхность постоянного давления в качестве эталона.Он никоим образом не определяет никаких дискретных границ.

Национальная метеорологическая служба и военные метеорологические службы проводят регулярные плановые наблюдения за атмосферой, иногда называемые зондированием. На воздушном шаре находится радиозонд, состоящий из миниатюрных радиоприемников и чувствительных элементов. Во время полета радиозонд передает данные, на основании которых специалист определяет ветер, температуру, влажность и высоту на выбранных поверхностях давления.

Мы регулярно собираем эти наблюдения, наносим на карту высоту поверхности с постоянным давлением и проводим линии, соединяющие точки одинаковой высоты.Эти линии представляют собой контуры высоты . Но что такое контур высоты?

Сначала рассмотрим топографическую карту с контурами, показывающими изменение высоты. Это высотные контуры поверхности местности. Поверхность Земли является фиксированной точкой отсчета, и мы очерчиваем вариации ее высоты.

Та же концепция применима к высотным контурам на диаграмме постоянного давления, за исключением того, что наша ссылка является Поверхность постоянного давления. Мы просто очерчиваем высоту прижимной поверхности.Например, анализ постоянного давления 700 миллибар представляет собой контурную карту высот поверхности давления 700 миллибар. Хотя контурная карта основана на вариациях высоты, эти вариации невелики по сравнению с эшелонами полета, и для всех практических целей вы можете рассматривать диаграмму на 700 миллибар как карту погоды на высоте примерно 10 000 футов или 3048 метров.

Анализ контуров показывает максимумы, гребни, минимумы и впадины наверху так же, как изобарический анализ показывает такие системы на поверхности.То, что мы говорим о моделях давления и системах, в равной степени применимо к изобарическому или контурному анализу.

Системы низкого давления довольно часто являются районами с плохой летной погодой, а районы с высоким давлением - преимущественно районами с благоприятной летной погодой. Однако одно предостережение - будьте осторожны, применяя эмпирическое правило «низкое давление - плохая погода, высокое давление - хорошая погода»; это слишком часто терпит неудачу. При планировании полета соберите всей возможной информации об ожидаемой погоде.Характер давления также напрямую связан с ветром, что является предметом следующей главы. Но сначала давайте посмотрим на давление и высотомеры.

Содержание
Предыдущий раздел: Атмосферное давление и альтиметрия
Следующий раздел: Альтиметрия

PDF-версию этой книги можно найти здесь. Вы можете купить печатную копию книги в amazon.com.

.

Смотрите также